{"title":"Effects of grain breakage on hydraulic conductivity in granular soils under one-dimensional compression","authors":"Faruk Sefi, Musaffa Ayşen Lav","doi":"10.1016/j.jterra.2025.101045","DOIUrl":null,"url":null,"abstract":"<div><div>Since hydraulic conductivity significantly influences the compression and deformation characteristics of granular terrains, this study examines the variations in permeability (<em>k<sub>20</sub></em>) of granular soils under one-dimensional compression. Two uniformly graded calcareous soil samples were tested: one with grain sizes of 9.50–12.70 mm, and another of 4.75–9.50 mm. Both samples were subjected to one-dimensional compression and constant-head permeability tests. Key soil properties affecting permeability (<em>k<sub>20</sub></em>), including absorption (<em>n</em>), specific surface area (<em>S<sub>s</sub></em>), relative density (<em>D<sub>r</sub></em>), void ratio (<em>e</em>), uniformity coefficient (<em>C<sub>u</sub></em>), effective grain size (<em>d<sub>10</sub></em>), and mean grain size (<em>d<sub>50</sub></em>), were analyzed. The virgin compression line (VCL) of the soil samples was identified within an oedometric stress (<em>σ<sub>VCL</sub></em>) range of 4.00–14.00 MPa, where the rate of change in soil properties affecting permeability was most pronounced. As oedometric stress increased, the instantaneous absorption (<em>n<sub>i</sub></em>) of the soil samples increased linearly, with a slope (<em>α<sub>n</sub></em>) of 0.055–0.061. Similarly, the instantaneous specific surface area (<em>S<sub>s,i</sub></em>) of the soil samples increased linearly, with a slope (<em>α<sub>s</sub></em>) of 1.229–1.388. In addition, practical equations were developed to predict the instantaneous relative density (<em>D<sub>r,i</sub></em>), instantaneous grain size distribution curve, and instantaneous permeability (<em>k<sub>20,i</sub></em>) of granular soils under one-dimensional compression.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"118 ","pages":"Article 101045"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489825000011","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since hydraulic conductivity significantly influences the compression and deformation characteristics of granular terrains, this study examines the variations in permeability (k20) of granular soils under one-dimensional compression. Two uniformly graded calcareous soil samples were tested: one with grain sizes of 9.50–12.70 mm, and another of 4.75–9.50 mm. Both samples were subjected to one-dimensional compression and constant-head permeability tests. Key soil properties affecting permeability (k20), including absorption (n), specific surface area (Ss), relative density (Dr), void ratio (e), uniformity coefficient (Cu), effective grain size (d10), and mean grain size (d50), were analyzed. The virgin compression line (VCL) of the soil samples was identified within an oedometric stress (σVCL) range of 4.00–14.00 MPa, where the rate of change in soil properties affecting permeability was most pronounced. As oedometric stress increased, the instantaneous absorption (ni) of the soil samples increased linearly, with a slope (αn) of 0.055–0.061. Similarly, the instantaneous specific surface area (Ss,i) of the soil samples increased linearly, with a slope (αs) of 1.229–1.388. In addition, practical equations were developed to predict the instantaneous relative density (Dr,i), instantaneous grain size distribution curve, and instantaneous permeability (k20,i) of granular soils under one-dimensional compression.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.