Toward carbon dots from citric acid and ethylenediamine, part 1: Structure, optical properties, main luminophore at different stages of synthesis

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alexey M. Vervald , Kirill A. Laptinskiy , Maria Yu. Khmeleva , Tatiana A. Dolenko
{"title":"Toward carbon dots from citric acid and ethylenediamine, part 1: Structure, optical properties, main luminophore at different stages of synthesis","authors":"Alexey M. Vervald ,&nbsp;Kirill A. Laptinskiy ,&nbsp;Maria Yu. Khmeleva ,&nbsp;Tatiana A. Dolenko","doi":"10.1016/j.cartre.2025.100452","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dots (CDs) from citric acid (CA) and ethylenediamine (EDA) synthesized under certain parameters of hydrothermal synthesis are reported to demonstrate ultra-bright luminescence in the blue-violet region with a quantum yield up to ∼100 %. However, the questions remain: is this luminescence really belong to the nanoparticles or to concomitant molecular luminophores; at what stage of the CDs’ synthesis such luminophores are formed and lost; how exactly structure of the reacted precursors changes when the synthesis parameters change? In this study, to answer these questions, the array of 392 samples of ethylenediamine and citric acid aqueous solutions undergone the process of hydrothermal method of synthesis, varying EDA:CA ratio in the range of 0–20:1, temperature in 80–200 °C, and reaction time in 0.5–6 h. For all samples the luminescence excitation-emission matrices, optical absorption and FTIR spectra were obtained, quantum yields and luminophores’ intensity of samples’ luminescence at an excitation wavelength of 350 nm were calculated. Based on the obtained data, the processes of CDs’ gradual synthesis – polymerization, dehydration and carbonization – were identified, the changes in the composition of the reaction products during different stages of synthesis were revealed. It was established that the formation of the main samples’ luminophores starts with the polymerization of precursors, accelerates with the initial carbonization of the samples, while the stage of graphitizing carbonization – formation of CDs cores – brings their partially destruction.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100452"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dots (CDs) from citric acid (CA) and ethylenediamine (EDA) synthesized under certain parameters of hydrothermal synthesis are reported to demonstrate ultra-bright luminescence in the blue-violet region with a quantum yield up to ∼100 %. However, the questions remain: is this luminescence really belong to the nanoparticles or to concomitant molecular luminophores; at what stage of the CDs’ synthesis such luminophores are formed and lost; how exactly structure of the reacted precursors changes when the synthesis parameters change? In this study, to answer these questions, the array of 392 samples of ethylenediamine and citric acid aqueous solutions undergone the process of hydrothermal method of synthesis, varying EDA:CA ratio in the range of 0–20:1, temperature in 80–200 °C, and reaction time in 0.5–6 h. For all samples the luminescence excitation-emission matrices, optical absorption and FTIR spectra were obtained, quantum yields and luminophores’ intensity of samples’ luminescence at an excitation wavelength of 350 nm were calculated. Based on the obtained data, the processes of CDs’ gradual synthesis – polymerization, dehydration and carbonization – were identified, the changes in the composition of the reaction products during different stages of synthesis were revealed. It was established that the formation of the main samples’ luminophores starts with the polymerization of precursors, accelerates with the initial carbonization of the samples, while the stage of graphitizing carbonization – formation of CDs cores – brings their partially destruction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信