Harnessing starch-stabilized biogenic silver nanoparticles for sustainable bacterial blight management in soybean

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Federico N. Spagnoletti , Irma N. Torres , Alejandra I. Hernandez , Romina Giacometti
{"title":"Harnessing starch-stabilized biogenic silver nanoparticles for sustainable bacterial blight management in soybean","authors":"Federico N. Spagnoletti ,&nbsp;Irma N. Torres ,&nbsp;Alejandra I. Hernandez ,&nbsp;Romina Giacometti","doi":"10.1016/j.bcab.2025.103509","DOIUrl":null,"url":null,"abstract":"<div><div>Green nanotechnology is a new strategy that contributes to sustainable agriculture by enhancing crop production, restoring soil quality, and improving pest management control. Green nanotechnology has emerged as a promising strategy to overcome the limitations of conventional chemical synthesis of nanomaterials. In this study, biogenic silver nanoparticles (st-AgNPs) were synthesized in the presence of extracellular metabolites of the fungus <em>Macrophomina phaseolina</em> with further modification of the particle's corona using starch to enhance stability and performance. After confirming the biocidal activity of st-AgNPs, their potential use against bacterial blight caused by <em>Pseudomonas savastanoi</em> in soybean was analyzed. Under controlled conditions, the effects of different NP concentrations were tested on healthy and infected plants. No evidence of phytotoxicity was observed in plants treated with 50–400 μg ml<sup>−1</sup> of NPs. A 100 μg ml<sup>−1</sup> st-AgNPs dose was the most effective in controlling the disease progression. Subsequent greenhouse experiments showed that infected plants sprayed with st-AgNPs (100 μg ml<sup>−1</sup>) improved their general status and increased the aerial biomass (36.6%) compared to non-treated plants. Furthermore, spray treatment with NPs partially reversed the negative effect of the infection, showing a 38.9% recovery in the greenness index. Notably, the severity of infection decreased by 78%, with no detectable silver traces in plant leaves. Biochemical analyses revealed that st-AgNPs treatment resulted in a reduction of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) activities, as well as lipid peroxidation, compared to non-treated infected plants. These findings suggest that the developed st-AgNPs not only effectively control <em>P. savastanoi</em> infection in soybean but also exhibit the potential to serve as a low-impact, environmentally friendly tool for inclusion in plant disease management protocols across various crops.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"64 ","pages":"Article 103509"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Green nanotechnology is a new strategy that contributes to sustainable agriculture by enhancing crop production, restoring soil quality, and improving pest management control. Green nanotechnology has emerged as a promising strategy to overcome the limitations of conventional chemical synthesis of nanomaterials. In this study, biogenic silver nanoparticles (st-AgNPs) were synthesized in the presence of extracellular metabolites of the fungus Macrophomina phaseolina with further modification of the particle's corona using starch to enhance stability and performance. After confirming the biocidal activity of st-AgNPs, their potential use against bacterial blight caused by Pseudomonas savastanoi in soybean was analyzed. Under controlled conditions, the effects of different NP concentrations were tested on healthy and infected plants. No evidence of phytotoxicity was observed in plants treated with 50–400 μg ml−1 of NPs. A 100 μg ml−1 st-AgNPs dose was the most effective in controlling the disease progression. Subsequent greenhouse experiments showed that infected plants sprayed with st-AgNPs (100 μg ml−1) improved their general status and increased the aerial biomass (36.6%) compared to non-treated plants. Furthermore, spray treatment with NPs partially reversed the negative effect of the infection, showing a 38.9% recovery in the greenness index. Notably, the severity of infection decreased by 78%, with no detectable silver traces in plant leaves. Biochemical analyses revealed that st-AgNPs treatment resulted in a reduction of phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) activities, as well as lipid peroxidation, compared to non-treated infected plants. These findings suggest that the developed st-AgNPs not only effectively control P. savastanoi infection in soybean but also exhibit the potential to serve as a low-impact, environmentally friendly tool for inclusion in plant disease management protocols across various crops.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信