High-order, refinement-based computation of the volume of an arbitrary polyhedron intersected by an implicitly defined fluid body

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Joaquín López
{"title":"High-order, refinement-based computation of the volume of an arbitrary polyhedron intersected by an implicitly defined fluid body","authors":"Joaquín López","doi":"10.1016/j.compfluid.2025.106556","DOIUrl":null,"url":null,"abstract":"<div><div>A high-order accurate, efficient and easy-to-implement method is presented for computing the fluid volume bounded by an arbitrary polyhedron, whether it is convex or non-convex, and an implicitly-defined fluid body. This method is an improved version of a previous one that used a recursive local grid refinement of the polyhedron and linear interpolations to determine the intersections of the interface that delimits the fluid body (or simply fluid-body interface) with the polyhedron boundaries. The proposed method first determines the volume of a polyhedral approximation of the bounded fluid region by using a general clipping-lookup and capping procedure valid for arbitrary polyhedra, where the points of intersection between the polyhedron and the fluid-body interface are obtained using a root-finding method rather than linear interpolations. The approximated polyhedral volume is subsequently corrected by using simple Gaussian quadrature rules over a triangulated approximation of the intersected fluid-body interface to achieve high-order accuracy. Recursive local grid refinement of the polyhedron also enables reductions in fluid volume errors. The proposed method requires no assumption of any particular local parametrization of the fluid-body interface, whether paraboloidal or of any other type, or deriving any complex analytical expressions to compute the volume of fluid contained within the polyhedron, thereby making the method easy to implement and generally applicable to any implicitly-defined function. A detailed assessment shows global fourth-order convergent accuracies on structured and unstructured grids even for complex fluid-body interfaces of a high degree. Speedups of several orders of magnitude with respect to the previous refinement method with linear interpolations are achieved even for relatively coarse grids. Comparisons with other methods are also presented, and the software with the implemented method and tests used for the assessment is freely available.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"289 ","pages":"Article 106556"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000167","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A high-order accurate, efficient and easy-to-implement method is presented for computing the fluid volume bounded by an arbitrary polyhedron, whether it is convex or non-convex, and an implicitly-defined fluid body. This method is an improved version of a previous one that used a recursive local grid refinement of the polyhedron and linear interpolations to determine the intersections of the interface that delimits the fluid body (or simply fluid-body interface) with the polyhedron boundaries. The proposed method first determines the volume of a polyhedral approximation of the bounded fluid region by using a general clipping-lookup and capping procedure valid for arbitrary polyhedra, where the points of intersection between the polyhedron and the fluid-body interface are obtained using a root-finding method rather than linear interpolations. The approximated polyhedral volume is subsequently corrected by using simple Gaussian quadrature rules over a triangulated approximation of the intersected fluid-body interface to achieve high-order accuracy. Recursive local grid refinement of the polyhedron also enables reductions in fluid volume errors. The proposed method requires no assumption of any particular local parametrization of the fluid-body interface, whether paraboloidal or of any other type, or deriving any complex analytical expressions to compute the volume of fluid contained within the polyhedron, thereby making the method easy to implement and generally applicable to any implicitly-defined function. A detailed assessment shows global fourth-order convergent accuracies on structured and unstructured grids even for complex fluid-body interfaces of a high degree. Speedups of several orders of magnitude with respect to the previous refinement method with linear interpolations are achieved even for relatively coarse grids. Comparisons with other methods are also presented, and the software with the implemented method and tests used for the assessment is freely available.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信