A robust monolithic nonlinear Newton method for the compressible Reynolds averaged Navier–Stokes Equations

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hulya Sukas, Mehmet Sahin
{"title":"A robust monolithic nonlinear Newton method for the compressible Reynolds averaged Navier–Stokes Equations","authors":"Hulya Sukas,&nbsp;Mehmet Sahin","doi":"10.1016/j.compfluid.2025.106549","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this work is the development of a fully monolithic nonlinear Newton algorithm for the unstructured vertex-based finite volume algorithm presented in [Akkurt and Sahin, An efficient edge based data structure for the compressible RANS equations on hybrid unstructured meshes. International Journal for Numerical Methods in Fluids, 94:13-31, (2022)]. A special attention is paid for the highly accurate construction of the first- and second-order Jacobian matrices for the Navier–Stokes equations and the one-equation negative Spalart–Allmaras turbulence model. The inviscid flux Jacobian matrices are evaluated exactly using the source code transformations provided by the INRIA Tapenade library. The implementation of the nonlinear Newton method is carried out using the PETSc Scalable Nonlinear Equations Solvers (SNES) with a line search technique. The method can utilize both the Jacobian-free finite difference and direct approaches for the Jacobian vector product. The INRIA pyAMG anisotropic mesh adaptation library has been integrated in order to further improve its numerical accuracy at a lower computational cost. The algorithm has been applied to the two- and three-dimensional mesh convergence test cases from the 4th AIAA CFD High Lift Prediction Workshop in order to demonstrate its robustness in achieving machine precision for a realistic high-lift system. The highly accurate Jacobian evaluation process and high CFL numbers are found to be very critical for achieving machine precision. The mesh adaptation is also proven to be very robust in refining regions with high gradients, which is especially important for the simulations at high angles of attack, where it is rather difficult to determine refinement regions <em>a priori</em>. The anisotropic mesh adaptation studies are carried out for up to 92,993,470 vertices in three-dimensions, and the numerical results indicate very good agreement with the committee’s experimental data.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"289 ","pages":"Article 106549"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000106","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this work is the development of a fully monolithic nonlinear Newton algorithm for the unstructured vertex-based finite volume algorithm presented in [Akkurt and Sahin, An efficient edge based data structure for the compressible RANS equations on hybrid unstructured meshes. International Journal for Numerical Methods in Fluids, 94:13-31, (2022)]. A special attention is paid for the highly accurate construction of the first- and second-order Jacobian matrices for the Navier–Stokes equations and the one-equation negative Spalart–Allmaras turbulence model. The inviscid flux Jacobian matrices are evaluated exactly using the source code transformations provided by the INRIA Tapenade library. The implementation of the nonlinear Newton method is carried out using the PETSc Scalable Nonlinear Equations Solvers (SNES) with a line search technique. The method can utilize both the Jacobian-free finite difference and direct approaches for the Jacobian vector product. The INRIA pyAMG anisotropic mesh adaptation library has been integrated in order to further improve its numerical accuracy at a lower computational cost. The algorithm has been applied to the two- and three-dimensional mesh convergence test cases from the 4th AIAA CFD High Lift Prediction Workshop in order to demonstrate its robustness in achieving machine precision for a realistic high-lift system. The highly accurate Jacobian evaluation process and high CFL numbers are found to be very critical for achieving machine precision. The mesh adaptation is also proven to be very robust in refining regions with high gradients, which is especially important for the simulations at high angles of attack, where it is rather difficult to determine refinement regions a priori. The anisotropic mesh adaptation studies are carried out for up to 92,993,470 vertices in three-dimensions, and the numerical results indicate very good agreement with the committee’s experimental data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信