Pyrolysis conversion of crown-ether-based covalent networks to kagome metal-organic frameworks on Au(111) and Ag(111)

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yifan Liang , Jianing Wang , Ruoting Yin , Zhengya Wang , Xiaoqing Wang , Jie Meng , Shijing Tan , Chuanxu Ma , Qunxiang Li , Bing Wang
{"title":"Pyrolysis conversion of crown-ether-based covalent networks to kagome metal-organic frameworks on Au(111) and Ag(111)","authors":"Yifan Liang ,&nbsp;Jianing Wang ,&nbsp;Ruoting Yin ,&nbsp;Zhengya Wang ,&nbsp;Xiaoqing Wang ,&nbsp;Jie Meng ,&nbsp;Shijing Tan ,&nbsp;Chuanxu Ma ,&nbsp;Qunxiang Li ,&nbsp;Bing Wang","doi":"10.1016/j.cartre.2025.100474","DOIUrl":null,"url":null,"abstract":"<div><div>On-surface chemistry provides an efficient approach to construction of diverse covalent architectures with atomic precision, ranging from one-dimensional chains and ribbons to two-dimensional covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) on coinage metal substrates. This study explores a distinct on-surface pyrolysis approach to MOFs derived from a crown ether molecular precursor on Au(111) and Ag(111) surfaces. Utilizing scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) combined with density functional theory (DFT) calculations, we elucidate the adsorption behavior and the characteristic macrocyclic configuration of the crown ether on Au(111). Subsequent surface-catalyzed Ullmann coupling reactions at an annealing temperature of 470 K lead to highly disordered COFs with the formation of four-membered and six-membered rings through dimerization and trimerization. For the Ag(111) surface, further annealing at 520 K initiates a unique dehydrogenative reaction within the macrocyclic rings, resulting in the loss of six hydrogen atoms. At an elevated temperature of 720 K, breaking of the second C−O bonds yields a long-range ordered triphenylene-based MOF structure. Electronic characterizations reveal the presence of both regular and diatomic kagome lattices, together with distinct quantum-dot states emerging in the pore regions. Additionally, we investigate the selective encapsulation of single guest picenes within the MOF structure, emphasizing the potential of triphenylene-based frameworks for advanced applications in sensing and molecular filtering. Our findings provide a comprehensive insight into the chemical reactivity of crown ethers on metal substrates and demonstrate a novel pathway to designing MOFs through an on-surface pyrolysis process.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100474"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On-surface chemistry provides an efficient approach to construction of diverse covalent architectures with atomic precision, ranging from one-dimensional chains and ribbons to two-dimensional covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) on coinage metal substrates. This study explores a distinct on-surface pyrolysis approach to MOFs derived from a crown ether molecular precursor on Au(111) and Ag(111) surfaces. Utilizing scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) combined with density functional theory (DFT) calculations, we elucidate the adsorption behavior and the characteristic macrocyclic configuration of the crown ether on Au(111). Subsequent surface-catalyzed Ullmann coupling reactions at an annealing temperature of 470 K lead to highly disordered COFs with the formation of four-membered and six-membered rings through dimerization and trimerization. For the Ag(111) surface, further annealing at 520 K initiates a unique dehydrogenative reaction within the macrocyclic rings, resulting in the loss of six hydrogen atoms. At an elevated temperature of 720 K, breaking of the second C−O bonds yields a long-range ordered triphenylene-based MOF structure. Electronic characterizations reveal the presence of both regular and diatomic kagome lattices, together with distinct quantum-dot states emerging in the pore regions. Additionally, we investigate the selective encapsulation of single guest picenes within the MOF structure, emphasizing the potential of triphenylene-based frameworks for advanced applications in sensing and molecular filtering. Our findings provide a comprehensive insight into the chemical reactivity of crown ethers on metal substrates and demonstrate a novel pathway to designing MOFs through an on-surface pyrolysis process.

Abstract Image

Au(111)和Ag(111)上冠醚共价网络向kagome金属有机骨架的热解转化
表面化学提供了一种以原子精度构建各种共价结构的有效方法,范围从一维链和带状到二维共价有机框架(COFs)和金属-有机框架(MOFs)。本研究探索了一种独特的表面热解方法,用于从Au(111)和Ag(111)表面的冠醚分子前体衍生出mof。利用扫描隧道显微镜(STM)和非接触原子力显微镜(nm - afm)结合密度泛函理论(DFT)计算,研究了冠醚在Au(111)上的吸附行为和特征大环构型。随后在470 K的退火温度下,表面催化的乌尔曼偶联反应导致高度无序的COFs,通过二聚化和三聚化形成四元和六元环。对于Ag(111)表面,在520 K下进一步退火引发了大环内独特的脱氢反应,导致6个氢原子的损失。在720 K的高温下,第二个C−O键的断裂产生了一个长程有序的三苯基MOF结构。电子表征揭示了规则和双原子kagome晶格的存在,以及在孔隙区域出现的不同量子点态。此外,我们研究了MOF结构中单个客体片段的选择性封装,强调了基于三苯乙烯的框架在传感和分子过滤方面的先进应用潜力。我们的研究结果为冠醚在金属基质上的化学反应性提供了全面的见解,并展示了通过表面热解过程设计mof的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信