Fabrication of electrochemical cell based on i-carrageenan doped NH4HCO2 solid electrolyte

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
V. Moniha , K. Venkatesh , M. Premalatha , S. Monisha , S. Selvalakshmi , B. Archana , M. Alagar , B. Sundaresan
{"title":"Fabrication of electrochemical cell based on i-carrageenan doped NH4HCO2 solid electrolyte","authors":"V. Moniha ,&nbsp;K. Venkatesh ,&nbsp;M. Premalatha ,&nbsp;S. Monisha ,&nbsp;S. Selvalakshmi ,&nbsp;B. Archana ,&nbsp;M. Alagar ,&nbsp;B. Sundaresan","doi":"10.1016/j.ssi.2024.116757","DOIUrl":null,"url":null,"abstract":"<div><div>Solution casting method was used to develop a natural polymer electrolyte (NPE) based on iota carrageenan (iCG) using different amounts of NH<sub>4</sub>HCO<sub>2</sub>. Distilled Water was chosen as the solvent. The structural, thermal, electrical, and electrochemical analyses of the iCG: NH<sub>4</sub>HCO<sub>2</sub> system confirmed its non-crystalline nature, low glass transition temperature (T<sub>g</sub> = 48 °C), maximum DC conductivity and electrochemical stability (3.11 V). The maximum DC conductivity for the composition 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> was observed to be 1.94 × 10<sup>−3</sup> S cm<sup>−1</sup>. A primary proton battery (PPB) was constructed by sandwiching the optimum electrolyte between MnO<sub>2</sub> as the cathode and Zn/ZnSO<sub>4</sub>·7H<sub>2</sub>O as the anode to evaluate the efficiency of the 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> NPE. Additionally, a single PEMFC was fabricated with 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> NPE. An OCV for PPB and PEM fuel cell were found to be 1.60 V and 616 mV, respectively.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116757"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824003059","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solution casting method was used to develop a natural polymer electrolyte (NPE) based on iota carrageenan (iCG) using different amounts of NH4HCO2. Distilled Water was chosen as the solvent. The structural, thermal, electrical, and electrochemical analyses of the iCG: NH4HCO2 system confirmed its non-crystalline nature, low glass transition temperature (Tg = 48 °C), maximum DC conductivity and electrochemical stability (3.11 V). The maximum DC conductivity for the composition 1 g iCG: 0.4 wt% NH4HCO2 was observed to be 1.94 × 10−3 S cm−1. A primary proton battery (PPB) was constructed by sandwiching the optimum electrolyte between MnO2 as the cathode and Zn/ZnSO4·7H2O as the anode to evaluate the efficiency of the 1 g iCG: 0.4 wt% NH4HCO2 NPE. Additionally, a single PEMFC was fabricated with 1 g iCG: 0.4 wt% NH4HCO2 NPE. An OCV for PPB and PEM fuel cell were found to be 1.60 V and 616 mV, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信