{"title":"Spatiotemporal forecasting using multi-graph neural network assisted dual domain transformer for wind power","authors":"Guolian Hou , Qingwei Li , Congzhi Huang","doi":"10.1016/j.enconman.2024.119393","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of wind power generation is crucial for operational and maintenance decision in wind farms. With the increasing scale and capacity of turbines, incorporating both temporal and spatial characteristics has become essential to improve prediction accuracy. In this paper, a novel spatiotemporal multi-step wind power forecasting method using multi-graph neural network assisted dual domain Transformer is proposed. Specifically, to adequately represent the heterogeneous dependencies among wind turbines, multi-relational graphs are constructed and integrated into a unified graph via attention mechanisms. Subsequently, the spatiotemporal fusion module (STFM) is developed using graph convolutional network and one-dimensional convolutional neural network to capture temporal and spatial features simultaneously. Moreover, the time–frequency dual domain Transformer (DDformer) is devised to fully utilize the information extracted by the STFM. Sequence learning in DDformer is performed through three perspectives, including multi-head self-attention mechanism, intrinsic mode function attention mechanism, and residual connection. Finally, the comprehensive evaluation metrics are formulated to assess the overall performance of wind power forecasting at both individual turbine and entire farm levels. Extensive simulations on a real-world dataset are conducted for multi-step forecasting, covering time horizons ranging from 10 min to 6 h ahead. In the case study, the proposed method consistently outperformed advanced benchmarks and ablation models, achieving average comprehensive normalized mean absolute error and normalized root mean square error of 5.8469% and 8.9461%, respectively, with improvements of 38.35% and 33.72%. Overall, the effectiveness of multi-step forecasting makes this study provide valuable insights into a new framework for wind power forecasting.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"325 ","pages":"Article 119393"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424013347","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of wind power generation is crucial for operational and maintenance decision in wind farms. With the increasing scale and capacity of turbines, incorporating both temporal and spatial characteristics has become essential to improve prediction accuracy. In this paper, a novel spatiotemporal multi-step wind power forecasting method using multi-graph neural network assisted dual domain Transformer is proposed. Specifically, to adequately represent the heterogeneous dependencies among wind turbines, multi-relational graphs are constructed and integrated into a unified graph via attention mechanisms. Subsequently, the spatiotemporal fusion module (STFM) is developed using graph convolutional network and one-dimensional convolutional neural network to capture temporal and spatial features simultaneously. Moreover, the time–frequency dual domain Transformer (DDformer) is devised to fully utilize the information extracted by the STFM. Sequence learning in DDformer is performed through three perspectives, including multi-head self-attention mechanism, intrinsic mode function attention mechanism, and residual connection. Finally, the comprehensive evaluation metrics are formulated to assess the overall performance of wind power forecasting at both individual turbine and entire farm levels. Extensive simulations on a real-world dataset are conducted for multi-step forecasting, covering time horizons ranging from 10 min to 6 h ahead. In the case study, the proposed method consistently outperformed advanced benchmarks and ablation models, achieving average comprehensive normalized mean absolute error and normalized root mean square error of 5.8469% and 8.9461%, respectively, with improvements of 38.35% and 33.72%. Overall, the effectiveness of multi-step forecasting makes this study provide valuable insights into a new framework for wind power forecasting.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.