The Bayesian backtracking problem in oceanic drift modelling

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Øyvind Breivik , Bente Moerman , Knut-Frode Dagestad , Tor Nordam , Gaute Hope , Lars Robert Hole , Arthur A. Allen , Lawrence D. Stone
{"title":"The Bayesian backtracking problem in oceanic drift modelling","authors":"Øyvind Breivik ,&nbsp;Bente Moerman ,&nbsp;Knut-Frode Dagestad ,&nbsp;Tor Nordam ,&nbsp;Gaute Hope ,&nbsp;Lars Robert Hole ,&nbsp;Arthur A. Allen ,&nbsp;Lawrence D. Stone","doi":"10.1016/j.ocemod.2025.102505","DOIUrl":null,"url":null,"abstract":"<div><div>Backtracking the drift of particles and substances is central to a range of studies in oceanography as well as in law enforcement, search and rescue and the mapping and investigation of marine pollution. Here we demonstrate how a Lagrangian particle model can be used in a forward mode with a Bayesian prior estimate on the release location of the object of interest. We show that for well-behaved drifters, forward and backward (reverse modelling) yield similar results over short periods, if the currents are only weakly divergent. However, for drifters undergoing discontinuous state changes, such as stranding, or objects abruptly and irreversibly changing their drift properties, or for buoyant drifters in strongly convergent flows, backward drift can yield wrongful search areas. We demonstrate this for a case where a liferaft is assigned a wind-speed dependent probability of capsizing, leading to an instantaneous change in drift properties. We also demonstrate the forward and backward methods for a drifter release experiment in the Agulhas current where we also assess the challenges of biases in the current fields. Finally, a method for incorporating multiple observations of debris with a forward model in the Bayesian posterior estimate of the initial location is outlined.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102505"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000095","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Backtracking the drift of particles and substances is central to a range of studies in oceanography as well as in law enforcement, search and rescue and the mapping and investigation of marine pollution. Here we demonstrate how a Lagrangian particle model can be used in a forward mode with a Bayesian prior estimate on the release location of the object of interest. We show that for well-behaved drifters, forward and backward (reverse modelling) yield similar results over short periods, if the currents are only weakly divergent. However, for drifters undergoing discontinuous state changes, such as stranding, or objects abruptly and irreversibly changing their drift properties, or for buoyant drifters in strongly convergent flows, backward drift can yield wrongful search areas. We demonstrate this for a case where a liferaft is assigned a wind-speed dependent probability of capsizing, leading to an instantaneous change in drift properties. We also demonstrate the forward and backward methods for a drifter release experiment in the Agulhas current where we also assess the challenges of biases in the current fields. Finally, a method for incorporating multiple observations of debris with a forward model in the Bayesian posterior estimate of the initial location is outlined.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信