Long-duration storm surges due to 2023 successive UK storms Ciarán and Domingos: Generation, field surveys, and numerical modelling

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Mohammad Heidarzadeh , Jadranka Šepić , Takumu Iwamoto
{"title":"Long-duration storm surges due to 2023 successive UK storms Ciarán and Domingos: Generation, field surveys, and numerical modelling","authors":"Mohammad Heidarzadeh ,&nbsp;Jadranka Šepić ,&nbsp;Takumu Iwamoto","doi":"10.1016/j.ocemod.2024.102487","DOIUrl":null,"url":null,"abstract":"<div><div>We model the long-duration storm surges generated by October–November 2023 storm chain in the English Channel employing a hybrid method including numerical modelling, field surveys and analysis of oceanic and atmospheric data. The event consisted of three successive storms: a weaker unnamed storm (27–30 October), Storm Ciarán (2–3 November with minimum pressure 948 hPa) and Storm Domingos (4–5 November with minimum pressure 958 hPa). The average surge duration produced by this storm chain was 10.5 days. The average maximum air pressure drop was 42 hPa during Ciarán and 23 hPa during Domingos. These pressure drops, combined with onshore wind stresses, led to average maximum storm surge amplitudes of 92 cm for Ciarán and 74 cm for Domingos. We accurately modelled storm surges using a three-level nested grid system and validated the results with tide gauge data. Sensitivity analysis showed a spatially-dependant impacts from tides and waves on maximum surge amplitudes. To correlate our modelling and data analysis with actual conditions on the ground, field surveys were conducted where we measured a runup heights of 4.1 m in Chesil Beach and 2.1 m in West Bay. These values were successfully reproduced by two independent empirical runup models enabling adaption of suitable models for storm hazard mitigation and resilience. A meteotsunami with an amplitude of 17–23 cm and a period of 11–40 min was identified during Ciarán. The innovative hybrid framework developed in this study is recommended for building robust systems for storm warnings and coastal resilience.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102487"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001732","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We model the long-duration storm surges generated by October–November 2023 storm chain in the English Channel employing a hybrid method including numerical modelling, field surveys and analysis of oceanic and atmospheric data. The event consisted of three successive storms: a weaker unnamed storm (27–30 October), Storm Ciarán (2–3 November with minimum pressure 948 hPa) and Storm Domingos (4–5 November with minimum pressure 958 hPa). The average surge duration produced by this storm chain was 10.5 days. The average maximum air pressure drop was 42 hPa during Ciarán and 23 hPa during Domingos. These pressure drops, combined with onshore wind stresses, led to average maximum storm surge amplitudes of 92 cm for Ciarán and 74 cm for Domingos. We accurately modelled storm surges using a three-level nested grid system and validated the results with tide gauge data. Sensitivity analysis showed a spatially-dependant impacts from tides and waves on maximum surge amplitudes. To correlate our modelling and data analysis with actual conditions on the ground, field surveys were conducted where we measured a runup heights of 4.1 m in Chesil Beach and 2.1 m in West Bay. These values were successfully reproduced by two independent empirical runup models enabling adaption of suitable models for storm hazard mitigation and resilience. A meteotsunami with an amplitude of 17–23 cm and a period of 11–40 min was identified during Ciarán. The innovative hybrid framework developed in this study is recommended for building robust systems for storm warnings and coastal resilience.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信