Dynamic and thermodynamic coupling between the atmosphere and ocean near the Kuroshio current and extension system

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Ajin Cho , Hajoon Song , Hyodae Seo , Rui Sun , Matthew R. Mazloff , Aneesh C. Subramanian , Bruce D. Cornuelle , Arthur J. Miller
{"title":"Dynamic and thermodynamic coupling between the atmosphere and ocean near the Kuroshio current and extension system","authors":"Ajin Cho ,&nbsp;Hajoon Song ,&nbsp;Hyodae Seo ,&nbsp;Rui Sun ,&nbsp;Matthew R. Mazloff ,&nbsp;Aneesh C. Subramanian ,&nbsp;Bruce D. Cornuelle ,&nbsp;Arthur J. Miller","doi":"10.1016/j.ocemod.2024.102496","DOIUrl":null,"url":null,"abstract":"<div><div>Relative wind (RW; wind relative to surface currents) has been shown to play a crucial role in air-sea interactions, influencing both atmospheric and oceanic dynamics. While the RW effects through momentum flux are well-documented, those through turbulent heat fluxes remain unknown. In this study, we investigate two distinct surface current feedbacks – those associated with the momentum flux and turbulent heat fluxes – by modifying respective bulk formulations in the regional ocean-atmosphere coupled system, and analyze both immediate and seasonal changes in the boundary layers. Our results show that strong ocean currents in the Kuroshio Current and Extension significantly impact surface coupling, with responses generally contingent on the wind-current angle: an increase (decrease) in air-sea momentum and turbulent heat fluxes occurs when the low-level wind and surface currents are aligned (opposed). The instantaneous responses to surface currents include changes in low-level wind, surface current speed, and humidity, which are consistent with anticipated changes for a given wind-current angle based on the bulk formulations. While the wind-current angle is still an important factor, it does not adequately capture the seasonal responses. On the seasonal timescale, both surface current feedbacks can alter the path of the Kuroshio Extension and mesoscale activities, resulting in different background states that affect air-sea momentum and turbulent heat exchanges. Our results suggest that the energetic current system, such as the Kuroshio Current and Extension, can be significantly influenced by surface current coupling through both momentum and turbulent heat fluxes.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102496"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001823","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Relative wind (RW; wind relative to surface currents) has been shown to play a crucial role in air-sea interactions, influencing both atmospheric and oceanic dynamics. While the RW effects through momentum flux are well-documented, those through turbulent heat fluxes remain unknown. In this study, we investigate two distinct surface current feedbacks – those associated with the momentum flux and turbulent heat fluxes – by modifying respective bulk formulations in the regional ocean-atmosphere coupled system, and analyze both immediate and seasonal changes in the boundary layers. Our results show that strong ocean currents in the Kuroshio Current and Extension significantly impact surface coupling, with responses generally contingent on the wind-current angle: an increase (decrease) in air-sea momentum and turbulent heat fluxes occurs when the low-level wind and surface currents are aligned (opposed). The instantaneous responses to surface currents include changes in low-level wind, surface current speed, and humidity, which are consistent with anticipated changes for a given wind-current angle based on the bulk formulations. While the wind-current angle is still an important factor, it does not adequately capture the seasonal responses. On the seasonal timescale, both surface current feedbacks can alter the path of the Kuroshio Extension and mesoscale activities, resulting in different background states that affect air-sea momentum and turbulent heat exchanges. Our results suggest that the energetic current system, such as the Kuroshio Current and Extension, can be significantly influenced by surface current coupling through both momentum and turbulent heat fluxes.
黑潮及其延伸系统附近大气与海洋的动力与热力学耦合
相对风(RW;风(相对于表面洋流)已被证明在海气相互作用中起着至关重要的作用,影响着大气和海洋动力学。虽然通过动量通量的RW效应有充分的记录,但通过湍流热通量的RW效应仍然未知。在本研究中,我们通过修改区域海洋-大气耦合系统中各自的体积公式,研究了两种不同的表面流反馈——动量通量和湍流热通量,并分析了边界层的即时变化和季节变化。研究结果表明,黑潮和伸展区的强海流对地表耦合有显著影响,其响应通常取决于气流的角度:当低层风和表层流对齐(相反)时,海气动量和湍流热通量增加(减少)。对地表流的瞬时响应包括低层风、地表流速度和湿度的变化,这些变化与基于bulk公式的给定风向角的预期变化一致。虽然气流角度仍然是一个重要的因素,但它并不能充分反映季节的变化。在季节时间尺度上,地表流反馈都可以改变黑潮扩展路径和中尺度活动,导致不同的背景状态影响海气动量和湍流热交换。我们的研究结果表明,高能流系统,如黑潮流和延伸,可以通过动量和湍流热通量受到表面电流耦合的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信