Bidirectional seismic response of assembled monolithic subway station-aboveground structure system under artificial bedrock ground motions

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Yu Miao, Han-Wen Ji, Yang Shi
{"title":"Bidirectional seismic response of assembled monolithic subway station-aboveground structure system under artificial bedrock ground motions","authors":"Yu Miao,&nbsp;Han-Wen Ji,&nbsp;Yang Shi","doi":"10.1016/j.undsp.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><div>Assembled monolithic subway station partly synthesizes the advantages of cast-in-place and precast subway stations. However, the related seismic response analysis considering the influences of vertical ground motion and aboveground structure is still scant. In this study, we firstly performed the statistical analysis on bidirectional bedrock ground motion parameters (response spectrum, duration and envelope function) using KiK-net data, and obtained some suggested values of the above parameters. Then, four sets of artificial bedrock ground motions with statistical meanings were generated and a three-dimensional finite element analysis of the seismic response of an existing two-story three-span subway station was conducted. The main results are summarized below. (1) The significant damage to assembled monolithic station under far-field strong motion firstly occurred at side middle slab; middle slab, upper column and related grouting sleeve joints were more damage-prone. (2) When horizontal peak ground acceleration stayed constant, overall the damage of far-field motion was stronger than that of near-fault motion. (3) Vertical ground motion obviously accelerated the damage progresses of various structural members at various positions, then aboveground structure further enhanced the damages and vertical displacement responses of parts of top slab. (4) For the axial force time-history of upper column during far-field strong motion, aboveground structure uplifted the baseline, and vertical ground motion increased the amplitude and advanced the obvious drop of the baseline, among which the latter effect of vertical ground motion on assembled monolithic station was stronger than that on cast-in-place station. (5) Vertical ground motion enhanced inter-story displacement during far-field strong motion, among which the influence on the upper story of assembled monolithic station could be obviously amplified by aboveground structure, and the amplification effect lagged behind the influence of vertical ground motion. Based on the results of this study, some suggestions for the seismic design of subway station are also provided.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 291-312"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424001272","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Assembled monolithic subway station partly synthesizes the advantages of cast-in-place and precast subway stations. However, the related seismic response analysis considering the influences of vertical ground motion and aboveground structure is still scant. In this study, we firstly performed the statistical analysis on bidirectional bedrock ground motion parameters (response spectrum, duration and envelope function) using KiK-net data, and obtained some suggested values of the above parameters. Then, four sets of artificial bedrock ground motions with statistical meanings were generated and a three-dimensional finite element analysis of the seismic response of an existing two-story three-span subway station was conducted. The main results are summarized below. (1) The significant damage to assembled monolithic station under far-field strong motion firstly occurred at side middle slab; middle slab, upper column and related grouting sleeve joints were more damage-prone. (2) When horizontal peak ground acceleration stayed constant, overall the damage of far-field motion was stronger than that of near-fault motion. (3) Vertical ground motion obviously accelerated the damage progresses of various structural members at various positions, then aboveground structure further enhanced the damages and vertical displacement responses of parts of top slab. (4) For the axial force time-history of upper column during far-field strong motion, aboveground structure uplifted the baseline, and vertical ground motion increased the amplitude and advanced the obvious drop of the baseline, among which the latter effect of vertical ground motion on assembled monolithic station was stronger than that on cast-in-place station. (5) Vertical ground motion enhanced inter-story displacement during far-field strong motion, among which the influence on the upper story of assembled monolithic station could be obviously amplified by aboveground structure, and the amplification effect lagged behind the influence of vertical ground motion. Based on the results of this study, some suggestions for the seismic design of subway station are also provided.
人工基岩地震动作用下组合整体式地铁车站-地上结构体系的双向地震响应
拼装整体式地铁车站部分综合了现浇和预制地铁车站的优点。然而,考虑垂直地震动和地上结构影响的相关地震反应分析仍然很少。本研究首先利用KiK-net数据对双向基岩地震动参数(响应谱、持续时间和包络函数)进行统计分析,得到了上述参数的一些建议值。在此基础上,生成了4组具有统计意义的人工基岩地震动,并对某既有两层三跨地铁站的地震响应进行了三维有限元分析。主要结果总结如下。(1)拼装整体站在远场强震作用下的显著损伤首先发生在侧中板处;中板、上柱及相关的注浆套筒缝更容易发生损伤。(2)水平峰值地加速度一定时,远场运动的总体破坏程度大于近断层运动。(3)垂直地震动明显加速了各位置各构件的损伤进程,而地上结构进一步增强了顶板部分的损伤和竖向位移响应。(4)对于远场强震作用下的上柱轴力时程,地上结构使基线抬升,垂直地震动使基线幅值增大并提前了基线的明显下降,其中垂直地震动对拼装整体式站的后一种作用强于对现浇站的后一种作用。(5)垂直地震动增强了远场强震时的层间位移,其中地面结构对拼装整体式站上层的影响可以明显放大,且放大效应滞后于垂直地震动的影响。在此基础上,对地铁车站的抗震设计提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信