Global sensitivity analysis of design variables for porous hydrostatic gas bearings considering uncertainty

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Yihua Wu , Lixiong Cao , Jiachang Tang , Mingqi Tian
{"title":"Global sensitivity analysis of design variables for porous hydrostatic gas bearings considering uncertainty","authors":"Yihua Wu ,&nbsp;Lixiong Cao ,&nbsp;Jiachang Tang ,&nbsp;Mingqi Tian","doi":"10.1016/j.probengmech.2024.103722","DOIUrl":null,"url":null,"abstract":"<div><div>Porous hydrostatic gas bearing (PHGB) utilizes porous materials as restrictors and is widely recognized in mechanical equipment and scientific instruments due to their exceptional stability and load capacity. At present, the design of PHGB relies on deterministic models to calculate bearing capacity and stiffness, and the adjustment of parameters such as air supply pressure and bearing clearance mainly depends on experience. However, uncertainties related to compressor performance, material properties, and manufacturing errors are inevitably introduced in the practical applications, which can significantly affect the design performance of PHGBs. To address these challenges, this paper presents a global sensitivity analysis to identify the sensitive factors causing variations in the mechanical properties of PHGBs. First, a PHGB model is developed based on the Darcy and continuity equations, and its predictive accuracy for bearing characteristics is validated. Subsequently, a global sensitivity analysis method employing sparse polynomial chaos expansion is introduced to quantitatively assess the impact of uncertainties such as supply pressure, bearing length, diameter, clearance, and eccentricity on load capacity and mass flow rate. This analysis identifies the most critical uncertain parameters influencing the mechanical performance of PHGBs. The insights gained from this study will enable designers to comprehensively understand the mechanical performance of bearings under uncertainty while reducing computational costs, thus providing a valuable theoretical foundation for PHGB analysis and design.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"79 ","pages":"Article 103722"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Porous hydrostatic gas bearing (PHGB) utilizes porous materials as restrictors and is widely recognized in mechanical equipment and scientific instruments due to their exceptional stability and load capacity. At present, the design of PHGB relies on deterministic models to calculate bearing capacity and stiffness, and the adjustment of parameters such as air supply pressure and bearing clearance mainly depends on experience. However, uncertainties related to compressor performance, material properties, and manufacturing errors are inevitably introduced in the practical applications, which can significantly affect the design performance of PHGBs. To address these challenges, this paper presents a global sensitivity analysis to identify the sensitive factors causing variations in the mechanical properties of PHGBs. First, a PHGB model is developed based on the Darcy and continuity equations, and its predictive accuracy for bearing characteristics is validated. Subsequently, a global sensitivity analysis method employing sparse polynomial chaos expansion is introduced to quantitatively assess the impact of uncertainties such as supply pressure, bearing length, diameter, clearance, and eccentricity on load capacity and mass flow rate. This analysis identifies the most critical uncertain parameters influencing the mechanical performance of PHGBs. The insights gained from this study will enable designers to comprehensively understand the mechanical performance of bearings under uncertainty while reducing computational costs, thus providing a valuable theoretical foundation for PHGB analysis and design.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信