{"title":"Development of a functionalized polystyrene platform from packaging waste via Friedel-Craft acylation","authors":"Daniela Porcu , Emiliano Carretti , Raffaella Fontana , David Chelazzi , Damiano Bandelli","doi":"10.1016/j.eurpolymj.2024.113676","DOIUrl":null,"url":null,"abstract":"<div><div>Through a circular economy approach, expanded polystyrene (EPS) waste can address the need to develop new low-impact materials suitable for packaging, adhesives, and even protective coatings needed for buildings and works of art. In this study, waste Polystyrene (PS) has been chemically modified with increasing feeds of maleic anhydride (MA), using a Lewis acid as a cationic activator (AlCl<sub>3</sub>) via Friedel-Crafts acylation. As a result, a novel library of polymer, renamed PS-MA, was synthesized by developing a “one pot” acylation reaction protocol. Nuclear Magnetic Resonance (NMR) and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) assessed the functionalization of PS with MA. PS-MA physicochemical properties were investigated through Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and Size Exclusion Chromatography (SEC), linking the characterization of the crosslinked structure with the functionalization degree. Finally, solubility tests yielded the Hansen Solubility Parameters (HSP) and Teas Triangle solubility windows of the new materials. Noticeably, the new PS-MA can be solubilized in green solvents, making its processability in chemical and industrial applications more sustainable than traditional PS. Overall, a new platform of PS-MA with tunable properties was formulated, which stands as an example of functionalized materials obtained from waste through a sustainable synthetic path, with promising impact in numerous industrial and processing sectors.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"224 ","pages":"Article 113676"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724009376","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Through a circular economy approach, expanded polystyrene (EPS) waste can address the need to develop new low-impact materials suitable for packaging, adhesives, and even protective coatings needed for buildings and works of art. In this study, waste Polystyrene (PS) has been chemically modified with increasing feeds of maleic anhydride (MA), using a Lewis acid as a cationic activator (AlCl3) via Friedel-Crafts acylation. As a result, a novel library of polymer, renamed PS-MA, was synthesized by developing a “one pot” acylation reaction protocol. Nuclear Magnetic Resonance (NMR) and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) assessed the functionalization of PS with MA. PS-MA physicochemical properties were investigated through Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA), and Size Exclusion Chromatography (SEC), linking the characterization of the crosslinked structure with the functionalization degree. Finally, solubility tests yielded the Hansen Solubility Parameters (HSP) and Teas Triangle solubility windows of the new materials. Noticeably, the new PS-MA can be solubilized in green solvents, making its processability in chemical and industrial applications more sustainable than traditional PS. Overall, a new platform of PS-MA with tunable properties was formulated, which stands as an example of functionalized materials obtained from waste through a sustainable synthetic path, with promising impact in numerous industrial and processing sectors.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.