Ultrafilters and the Katětov order

IF 0.6 4区 数学 Q3 MATHEMATICS
Krzysztof Kowitz, Adam Kwela
{"title":"Ultrafilters and the Katětov order","authors":"Krzysztof Kowitz,&nbsp;Adam Kwela","doi":"10.1016/j.topol.2024.109191","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>I</mi></math></span> be an ideal on <em>ω</em>. Following Baumgartner (1995) <span><span>[2]</span></span>, we say that an ultrafilter <span><math><mi>U</mi></math></span> on <em>ω</em> is an <span><math><mi>I</mi></math></span>-ultrafilter if for every function <span><math><mi>f</mi><mo>:</mo><mi>ω</mi><mo>→</mo><mi>ω</mi></math></span> there is <span><math><mi>A</mi><mo>∈</mo><mi>U</mi></math></span> with <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo><mo>∈</mo><mi>I</mi></math></span>. In particular, P-points are exactly <span><math><mrow><mi>Fin</mi></mrow><mo>×</mo><mrow><mi>Fin</mi></mrow></math></span>-ultrafilters.</div><div>If there is an <span><math><mi>I</mi></math></span>-ultrafilter which is not a <span><math><mi>J</mi></math></span>-ultrafilter, then <span><math><mi>I</mi></math></span> is not below <span><math><mi>J</mi></math></span> in the Katětov order <span><math><msub><mrow><mo>⩽</mo></mrow><mrow><mi>K</mi></mrow></msub></math></span> (i.e., for every function <span><math><mi>f</mi><mo>:</mo><mi>ω</mi><mo>→</mo><mi>ω</mi></math></span> there is <span><math><mi>A</mi><mo>∈</mo><mi>I</mi></math></span> with <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>[</mo><mi>A</mi><mo>]</mo><mo>∉</mo><mi>J</mi></math></span>), however the reversed implication is not true (even consistently).</div><div>Recently it was shown that for all Borel ideals <span><math><mi>I</mi></math></span> we have: <span><math><mi>I</mi><msub><mrow><mo>≰</mo></mrow><mrow><mi>K</mi></mrow></msub><mrow><mi>Fin</mi></mrow><mo>×</mo><mrow><mi>Fin</mi></mrow></math></span> if and only if in some forcing extension one can find an <span><math><mi>I</mi></math></span>-ultrafilter which is not a P-point (Filipów et al. (2022) <span><span>[6]</span></span>).</div><div>We show that under some combinatorial assumptions imposed on the ideal <span><math><mi>J</mi></math></span>, the classes of <span><math><mi>J</mi></math></span>-ultrafilters and <span><math><mrow><mi>Fin</mi></mrow><mo>×</mo><mi>J</mi></math></span>-ultrafilters coincide. This allows us to find some sufficient conditions on ideals to obtain the equivalence: <span><math><mi>I</mi><msub><mrow><mo>≰</mo></mrow><mrow><mi>K</mi></mrow></msub><mrow><mi>Fin</mi></mrow><mo>×</mo><mi>J</mi></math></span> if and only if in some forcing extension one can find an <span><math><mi>I</mi></math></span>-ultrafilter which is not a <span><math><mi>J</mi></math></span>-ultrafilter. We provide several examples of ideals, for which the above equivalence is true, including the ideal of nowhere dense subsets of <span><math><mi>Q</mi></math></span> and the ideal of sets of asymptotic density zero.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"361 ","pages":"Article 109191"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003766","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let I be an ideal on ω. Following Baumgartner (1995) [2], we say that an ultrafilter U on ω is an I-ultrafilter if for every function f:ωω there is AU with f[A]I. In particular, P-points are exactly Fin×Fin-ultrafilters.
If there is an I-ultrafilter which is not a J-ultrafilter, then I is not below J in the Katětov order K (i.e., for every function f:ωω there is AI with f1[A]J), however the reversed implication is not true (even consistently).
Recently it was shown that for all Borel ideals I we have: IKFin×Fin if and only if in some forcing extension one can find an I-ultrafilter which is not a P-point (Filipów et al. (2022) [6]).
We show that under some combinatorial assumptions imposed on the ideal J, the classes of J-ultrafilters and Fin×J-ultrafilters coincide. This allows us to find some sufficient conditions on ideals to obtain the equivalence: IKFin×J if and only if in some forcing extension one can find an I-ultrafilter which is not a J-ultrafilter. We provide several examples of ideals, for which the above equivalence is true, including the ideal of nowhere dense subsets of Q and the ideal of sets of asymptotic density zero.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信