ZrO2 stablishing CoO facilitates hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Kaiyun Lu , Mingxiu Cao , Yuxin Du , Hao Huang , Wenjie Xiang , Guangbo Liu , Jifan Li , Chun-Ling Liu , Noritatsu Tsubaki , Wen-Sheng Dong
{"title":"ZrO2 stablishing CoO facilitates hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran","authors":"Kaiyun Lu ,&nbsp;Mingxiu Cao ,&nbsp;Yuxin Du ,&nbsp;Hao Huang ,&nbsp;Wenjie Xiang ,&nbsp;Guangbo Liu ,&nbsp;Jifan Li ,&nbsp;Chun-Ling Liu ,&nbsp;Noritatsu Tsubaki ,&nbsp;Wen-Sheng Dong","doi":"10.1016/j.mcat.2024.114765","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of high value-added 2,5-dimethylfuran (2,5-DMF) from catalytic hydrogenolysis of 5-hydroxymethylfurfural (5-HMF) is one of significant reactions for biomass utilization, but it still confronts big challenges for the development of base metal catalysts with high performance. In this work, we fabricated series of ZrO<sub>2</sub> modified Co nanocatalysts derived from layered double hydroxides (LDHs), wherein metastable state CoO species can be stablished via sacrifice of a portion of surface vacancies, for selective synthesis of 2,5-DMF via 5-HMF hydrogenolysis. The optimal catalyst 2ZrO<sub>2</sub>-Co/Al<sub>2</sub>O<sub>3</sub> shows great catalytic performance and good stability, which gives a high 2,5-DMF yield of up to 97.3 %. The addition of ZrO<sub>2</sub> stablishes the metastable state CoO species, which cooperate with suitable oxygen vacancies and enhance the adsorption of 5-HMF and heterolytic dissociation of H<sub>2</sub> to generate highly active H<sup>δ−</sup> species, consequently achieving excellent catalytic performance for hydrogenolysis of 5-HMF to 2,5-DMF.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"572 ","pages":"Article 114765"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124009477","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of high value-added 2,5-dimethylfuran (2,5-DMF) from catalytic hydrogenolysis of 5-hydroxymethylfurfural (5-HMF) is one of significant reactions for biomass utilization, but it still confronts big challenges for the development of base metal catalysts with high performance. In this work, we fabricated series of ZrO2 modified Co nanocatalysts derived from layered double hydroxides (LDHs), wherein metastable state CoO species can be stablished via sacrifice of a portion of surface vacancies, for selective synthesis of 2,5-DMF via 5-HMF hydrogenolysis. The optimal catalyst 2ZrO2-Co/Al2O3 shows great catalytic performance and good stability, which gives a high 2,5-DMF yield of up to 97.3 %. The addition of ZrO2 stablishes the metastable state CoO species, which cooperate with suitable oxygen vacancies and enhance the adsorption of 5-HMF and heterolytic dissociation of H2 to generate highly active Hδ− species, consequently achieving excellent catalytic performance for hydrogenolysis of 5-HMF to 2,5-DMF.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信