Harilal, Yi-Lin Kao, Chao Pan, David Aili, Qingfeng Li
{"title":"Physicochemical properties of short-side-chain perfluorosulfonic acid membranes at elevated temperatures","authors":"Harilal, Yi-Lin Kao, Chao Pan, David Aili, Qingfeng Li","doi":"10.1016/j.ssi.2024.116747","DOIUrl":null,"url":null,"abstract":"<div><div>Water and CO<sub>2</sub> electrolysis at elevated temperatures in cells equipped with short-side-chain perfluorosulfonic acid membranes could potentially allow for new approaches to tuning catalyst kinetics and selectivity, but the membrane characteristics under such conditions remains to be described. In this work, a short-side-chain perfluorosulfonic acid membrane (Aquivion) is characterized at temperatures up to 150 °C and high humidification levels with respect to tensile behavior, ionic conductivity, permeability of hydrogen and methanol, and stability. The membrane is found to retain mechanical robustness at temperatures up to at least 130 °C while dehydration at temperatures above 100 °C under ambient pressure results in a significant conductivity decay. The densification of the membrane matrix at temperatures above the boiling point of water under varied pressures leads to reduced hydrogen and methanol permeability. Pressurization up to 5 bars effectively mitigates the conductivity decay due to the presence of liquid water but also results in increased permeability. The membrane stability test, as characterized by hydrogen crossover measurements, shows that humidification is a harsher stressor than temperature in the studied range.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116747"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002959","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water and CO2 electrolysis at elevated temperatures in cells equipped with short-side-chain perfluorosulfonic acid membranes could potentially allow for new approaches to tuning catalyst kinetics and selectivity, but the membrane characteristics under such conditions remains to be described. In this work, a short-side-chain perfluorosulfonic acid membrane (Aquivion) is characterized at temperatures up to 150 °C and high humidification levels with respect to tensile behavior, ionic conductivity, permeability of hydrogen and methanol, and stability. The membrane is found to retain mechanical robustness at temperatures up to at least 130 °C while dehydration at temperatures above 100 °C under ambient pressure results in a significant conductivity decay. The densification of the membrane matrix at temperatures above the boiling point of water under varied pressures leads to reduced hydrogen and methanol permeability. Pressurization up to 5 bars effectively mitigates the conductivity decay due to the presence of liquid water but also results in increased permeability. The membrane stability test, as characterized by hydrogen crossover measurements, shows that humidification is a harsher stressor than temperature in the studied range.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.