{"title":"CompreCity: Accelerating the Traveling Salesman Problem on GPU with data compression","authors":"Salih Yalcin , Hamdi Burak Usul , Gulay Yalcin","doi":"10.1016/j.vlsi.2024.102333","DOIUrl":null,"url":null,"abstract":"<div><div>Traveling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it is involved in many computing problems such as networks, genome analysis, logistics etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from the host device would reduce the performance in execution time. In this study, we applied three data compression methodologies to represent cities in the TSP such as (1) Using Greatest Common Divisor (2) Shift Cities to the Origin (3) Splitting Surface to Grids. Therefore, we include more cities in GPU memory and reduce the number of data transfers from the host device. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and The Lin–Kernighan–Helsgaun (LKH) Algorithm. We show that our implementation presents more than 25% performance improvement for both algorithms.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"102 ","pages":"Article 102333"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001974","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Traveling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it is involved in many computing problems such as networks, genome analysis, logistics etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from the host device would reduce the performance in execution time. In this study, we applied three data compression methodologies to represent cities in the TSP such as (1) Using Greatest Common Divisor (2) Shift Cities to the Origin (3) Splitting Surface to Grids. Therefore, we include more cities in GPU memory and reduce the number of data transfers from the host device. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and The Lin–Kernighan–Helsgaun (LKH) Algorithm. We show that our implementation presents more than 25% performance improvement for both algorithms.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.