Citronella oil-loaded electro-spun single and core-shell nano fibers as sustained repellent systems against Aedes aegypti

Samali Udara Liyanaarachchi , Sanjeewa K. Rodrigo , Nilwala Kottegoda , Veranja Karunaratne , Menaka Hapugoda , Tharaka Ranathunge , Lahiru Udayanga , Dushmantha Adikari
{"title":"Citronella oil-loaded electro-spun single and core-shell nano fibers as sustained repellent systems against Aedes aegypti","authors":"Samali Udara Liyanaarachchi ,&nbsp;Sanjeewa K. Rodrigo ,&nbsp;Nilwala Kottegoda ,&nbsp;Veranja Karunaratne ,&nbsp;Menaka Hapugoda ,&nbsp;Tharaka Ranathunge ,&nbsp;Lahiru Udayanga ,&nbsp;Dushmantha Adikari","doi":"10.1016/j.nxnano.2024.100127","DOIUrl":null,"url":null,"abstract":"<div><div>Devising a natural and an effective repellent system is the challenge that needs to be addressed to meet the current demand among the people, despite the progress made in the mosquito control. The effort towards this goal should constitute; natural repellent, biodegradability, higher repellent loading, sustained release of the repellent. In this work, natural, biodegradable, eco-friendly and long-lasting mosquito repellent has been prepared with higher loading of citronella oil (1 %) in Polyvinyl alcohol (PVA) nanofibers. Uniaxial (CP-U) and coaxial (CP-C) nanofiber-composites were electrospun using non-toxic, biodegradable PVA at 10 % w/w and citronella oil. It was found that maintaining the outer:inner flow rate ratio at 5:2 in coaxial process is imperative to produce good fibers. Average fiber diameter of CP-U fibers was 138.5 ± 62.5 nm and for CP-C fibers it was 367.3 ± 160.1 nm. TEM analysis confirmed the core-shell structure formed in CP-C fibers by coaxial electrospinning. FTIR analysis indicated CEO incorporation in both composites and thermal analyses showed mass losses corresponding to CEO decomposition, with CP-U fibers exhibiting better thermal stability due to stronger interactions between the oil and polymer. Encapsulation efficiency and loading capacity were 20.19 % ± 0.34 and 1.83 % ± 0.03 for CP-U, and 50.25 % ± 0.32 and 14.85 % ± 0.09 for CP-C, respectively. Further, release patterns and release kinetics were studied. CP-C fibers can effectively release 94.14 % of the encapsulated oil providing an extended protection window compared to matrix encapsulation (68.75 %) after 168 hours. Release kinetics followed the Korsmeyer-Peppas model, with CP-U exhibiting Fickian diffusion (n &lt; 0.5) and CP-C showing non-Fickian diffusion (0.5 &lt;n &lt; 1). Mosquito repellent tests showed CP-C fibers were effective (85.4 ± 1.40 %) than CP-U (56.1 ± 2.79 %) and comparable to DEET (28.7 ± 4.94 %) even after 1 week. To the best of our knowledge, this is the first time neat-citronella oil has been encapsulated at the core of multi-layered nanofibers. Multi-layered encapsulation of essential oils turned out to be very effective in sustaining their repelling activity for longer periods. The outcome of this work has a high potential to be developed into an attractive-convenient product for the consumers and it can be more beneficial for infants and babies, adults with sensitive skin and school children.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100127"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Devising a natural and an effective repellent system is the challenge that needs to be addressed to meet the current demand among the people, despite the progress made in the mosquito control. The effort towards this goal should constitute; natural repellent, biodegradability, higher repellent loading, sustained release of the repellent. In this work, natural, biodegradable, eco-friendly and long-lasting mosquito repellent has been prepared with higher loading of citronella oil (1 %) in Polyvinyl alcohol (PVA) nanofibers. Uniaxial (CP-U) and coaxial (CP-C) nanofiber-composites were electrospun using non-toxic, biodegradable PVA at 10 % w/w and citronella oil. It was found that maintaining the outer:inner flow rate ratio at 5:2 in coaxial process is imperative to produce good fibers. Average fiber diameter of CP-U fibers was 138.5 ± 62.5 nm and for CP-C fibers it was 367.3 ± 160.1 nm. TEM analysis confirmed the core-shell structure formed in CP-C fibers by coaxial electrospinning. FTIR analysis indicated CEO incorporation in both composites and thermal analyses showed mass losses corresponding to CEO decomposition, with CP-U fibers exhibiting better thermal stability due to stronger interactions between the oil and polymer. Encapsulation efficiency and loading capacity were 20.19 % ± 0.34 and 1.83 % ± 0.03 for CP-U, and 50.25 % ± 0.32 and 14.85 % ± 0.09 for CP-C, respectively. Further, release patterns and release kinetics were studied. CP-C fibers can effectively release 94.14 % of the encapsulated oil providing an extended protection window compared to matrix encapsulation (68.75 %) after 168 hours. Release kinetics followed the Korsmeyer-Peppas model, with CP-U exhibiting Fickian diffusion (n < 0.5) and CP-C showing non-Fickian diffusion (0.5 <n < 1). Mosquito repellent tests showed CP-C fibers were effective (85.4 ± 1.40 %) than CP-U (56.1 ± 2.79 %) and comparable to DEET (28.7 ± 4.94 %) even after 1 week. To the best of our knowledge, this is the first time neat-citronella oil has been encapsulated at the core of multi-layered nanofibers. Multi-layered encapsulation of essential oils turned out to be very effective in sustaining their repelling activity for longer periods. The outcome of this work has a high potential to be developed into an attractive-convenient product for the consumers and it can be more beneficial for infants and babies, adults with sensitive skin and school children.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信