Husain Abbas , Abdullah Almajed , Esmatullah Kotwal , Yousef Al-Salloum
{"title":"Bearing capacity enhancement of footings using confining inclined micropiles: Experimental and analytical investigation","authors":"Husain Abbas , Abdullah Almajed , Esmatullah Kotwal , Yousef Al-Salloum","doi":"10.1016/j.cscm.2024.e04184","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the bearing capacity (BC) of existing footings is usually a challenging task. Most of the methods employed are either cumbersome or are not efficient and effective. In the present study, the confinement provided by equally spaced inclined micropiles around a square footing is used to improve the BC of footing. Three angles of inclination with horizontal, viz. 90°, 105°, and 120° of micropiles provided at spacings of 0.33 <em>B</em> and 0.23 <em>B</em> (<em>B</em> is the size of square footing) were investigated. Including the control footing with no micropiles, seven footings were tested under uniformly incrementing quasi-static load. The test results reveal significant enhancement in BC of footing confined by micropiles, which increases with the increase in the inclination of micropiles and with the reduction in the spacing of micropiles. For the micropile spacing of 0.33 <em>B</em>, the enhancement in the BC of footing varied from 14.7 % to 44.2 %, which was enhanced to 26.3–56.5 % for the micropile spacing of 0.23 <em>B</em>. Based on the validation with the test results, an analytical procedure is developed for the design of confinement scheme using inclined micropiles to enhance the BC of shallow isolated footings. An example is also provided for assessing the BC enhancement and footing settlement due to the confining micropiles provided around a shallow rectangular footing.</div></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"22 ","pages":"Article e04184"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524013366","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the bearing capacity (BC) of existing footings is usually a challenging task. Most of the methods employed are either cumbersome or are not efficient and effective. In the present study, the confinement provided by equally spaced inclined micropiles around a square footing is used to improve the BC of footing. Three angles of inclination with horizontal, viz. 90°, 105°, and 120° of micropiles provided at spacings of 0.33 B and 0.23 B (B is the size of square footing) were investigated. Including the control footing with no micropiles, seven footings were tested under uniformly incrementing quasi-static load. The test results reveal significant enhancement in BC of footing confined by micropiles, which increases with the increase in the inclination of micropiles and with the reduction in the spacing of micropiles. For the micropile spacing of 0.33 B, the enhancement in the BC of footing varied from 14.7 % to 44.2 %, which was enhanced to 26.3–56.5 % for the micropile spacing of 0.23 B. Based on the validation with the test results, an analytical procedure is developed for the design of confinement scheme using inclined micropiles to enhance the BC of shallow isolated footings. An example is also provided for assessing the BC enhancement and footing settlement due to the confining micropiles provided around a shallow rectangular footing.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.