{"title":"Colletotrichum gloeosporioides (endophytic fungi) mediated biosynthesis of TiO2 nanoparticles for high-performance dye-sensitized solar cell","authors":"Sakshi Singh , Shubham Sharma , Rajnish Bharti , Ravindra Nath Kharwar , Pankaj Srivastava","doi":"10.1016/j.nxnano.2024.100122","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports an environmentally friendly protocol for synthesizing TiO<sub>2</sub> nanoparticles (NPs) by utilizing endophytic fungi, <em>Colletotrichum gloeosporioides (C. gloeosporioides)</em>. The fungi isolated from Thevetia peruviana, worked as a bio-capping agent to regulate the growing TiO<sub>2</sub> NPs morphology and agglomeration behavior. The formation of TiO<sub>2</sub> NPs was validated by surface plasmon resonance, observed using UV–vis spectroscopy. Using XRD and HRTEM, the structure, size, and shape of the as-synthesized anatase TiO<sub>2</sub> NPs were characterized. BET analysis was used to examine the surface area and porosity. EIS revealed the greater charge collection efficiency and enhanced electron lifetime for the TiO<sub>2</sub> obtained with N-3 (endophytic fungal extract). The dye-sensitized solar cell (DSSC) fabricated with bio-capped TiO<sub>2</sub> (N-3) photoanode exhibited greater light-to-current conversion efficiency, 3.50 %; much enhanced compared to 0.98 % obtained with un-capped TiO<sub>2</sub> NPs (N-1) based cell. The study demonstrated that the endophytic fungus <em>C.gloeosporioides</em> played a vital role in enhancing the cell performance.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work reports an environmentally friendly protocol for synthesizing TiO2 nanoparticles (NPs) by utilizing endophytic fungi, Colletotrichum gloeosporioides (C. gloeosporioides). The fungi isolated from Thevetia peruviana, worked as a bio-capping agent to regulate the growing TiO2 NPs morphology and agglomeration behavior. The formation of TiO2 NPs was validated by surface plasmon resonance, observed using UV–vis spectroscopy. Using XRD and HRTEM, the structure, size, and shape of the as-synthesized anatase TiO2 NPs were characterized. BET analysis was used to examine the surface area and porosity. EIS revealed the greater charge collection efficiency and enhanced electron lifetime for the TiO2 obtained with N-3 (endophytic fungal extract). The dye-sensitized solar cell (DSSC) fabricated with bio-capped TiO2 (N-3) photoanode exhibited greater light-to-current conversion efficiency, 3.50 %; much enhanced compared to 0.98 % obtained with un-capped TiO2 NPs (N-1) based cell. The study demonstrated that the endophytic fungus C.gloeosporioides played a vital role in enhancing the cell performance.