Competitive effects of polymeric ligands molecular weight on the gold colloidal nanocatalysts: Impact of catalysts design and catalytic performance

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Stefano Scurti , Elena Rodríguez-Aguado , Juan Antonio Cecilia , Daniele Caretti , Nikolaos Dimitratos
{"title":"Competitive effects of polymeric ligands molecular weight on the gold colloidal nanocatalysts: Impact of catalysts design and catalytic performance","authors":"Stefano Scurti ,&nbsp;Elena Rodríguez-Aguado ,&nbsp;Juan Antonio Cecilia ,&nbsp;Daniele Caretti ,&nbsp;Nikolaos Dimitratos","doi":"10.1016/j.mcat.2024.114780","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the influence of hydro-soluble polymeric ligands on the properties and catalytic performance of colloidal gold nanoparticles supported on activated carbon. The aim was to understand how polymer molecular weight affects Au nanoparticle size, dispersion, and catalytic activity, providing a framework for optimizing catalysis from the design phase. Three polymeric ligands (PVA, PEO, and PVAm) with different molecular weights were synthesized via controlled chain-transfer-to-solvent reactions and used to prepare supported colloidal Au nanoparticles through sol-immobilization. The results demonstrated that molecular weight significantly impacts Au nanoparticle size. Moreover, catalytic activity was assessed using the reduction of 4-nitrophenol as a model reaction. As polymer molecular weight increased, the apparent kinetic constant (k<sub>app</sub>) decreased, particularly for PEO-based catalysts, where k<sub>app</sub> decreased by an order of magnitude. Higher molecular weight polymers also formed dense polymeric \"brushes,\" hindering reagent diffusion and reducing catalytic performance. Further analysis of Au/polymer weight ratios revealed that decreasing polymer content improved catalytic activity, particularly in Au-PVAm catalysts. The findings underscore the crucial role of polymeric ligands in colloidal nanocatalyst design, emphasizing the need to investigate the metal-polymer interface to optimize catalyst properties.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"572 ","pages":"Article 114780"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124009623","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the influence of hydro-soluble polymeric ligands on the properties and catalytic performance of colloidal gold nanoparticles supported on activated carbon. The aim was to understand how polymer molecular weight affects Au nanoparticle size, dispersion, and catalytic activity, providing a framework for optimizing catalysis from the design phase. Three polymeric ligands (PVA, PEO, and PVAm) with different molecular weights were synthesized via controlled chain-transfer-to-solvent reactions and used to prepare supported colloidal Au nanoparticles through sol-immobilization. The results demonstrated that molecular weight significantly impacts Au nanoparticle size. Moreover, catalytic activity was assessed using the reduction of 4-nitrophenol as a model reaction. As polymer molecular weight increased, the apparent kinetic constant (kapp) decreased, particularly for PEO-based catalysts, where kapp decreased by an order of magnitude. Higher molecular weight polymers also formed dense polymeric "brushes," hindering reagent diffusion and reducing catalytic performance. Further analysis of Au/polymer weight ratios revealed that decreasing polymer content improved catalytic activity, particularly in Au-PVAm catalysts. The findings underscore the crucial role of polymeric ligands in colloidal nanocatalyst design, emphasizing the need to investigate the metal-polymer interface to optimize catalyst properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信