Characterization and modification mechanism of recycled silty clay slurry as a shield slag conditioner: Macroscopic, mesoscopic, and microscopic multiscale analysis

IF 6.5 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Keqi Liu, Pengxi Lu, Wen Zhao, Shuhong Wang
{"title":"Characterization and modification mechanism of recycled silty clay slurry as a shield slag conditioner: Macroscopic, mesoscopic, and microscopic multiscale analysis","authors":"Keqi Liu,&nbsp;Pengxi Lu,&nbsp;Wen Zhao,&nbsp;Shuhong Wang","doi":"10.1016/j.cscm.2024.e04158","DOIUrl":null,"url":null,"abstract":"<div><div>The large amount of slag generated during the construction of earth pressure balance shield (EPBS) not only incurs significant disposal costs, but also exacerbates environmental pollution. To improve the utilization of the shield slag, silty clay with additive is proposed as a slag conditioner instead of bentonite. Firstly, various macroscopic properties of the bentonite and silty clay slurries are tested. Subsequently, the relationships between the macroscopic properties of the silty clay slurries containing additives and the modification mechanism are evaluated at microscopic, mesoscopic, and macroscopic scales by using infrared spectroscopy (IR), scanning electron microscope (SEM), and Zeta potential tests, respectively. Based on these tests, reasons for variations in modification effects of different slurries are identified. The results show that addition of 3 % sodium carbonate to the silty clay can effectively improve the rheological properties of the slurry. The modification mechanism of sodium carbonate involves the formation of hydrogen bonds between water molecules and inner surface hydroxyl groups within the lattice layer of kaolinite. This process significantly enhances the rheological properties of the silty clay slurry. Furthermore, sodium carbonate alters the contact relationships between the silty clay particles, which increases viscosity and reduces permeability of the slurry. Finally, sodium carbonate increases thickness of the electrical double layer of the silty clay particles. This allows the particles to bind more water molecules, therefore improving slurry-making capacity of the silty clay. This paper presents an innovative multiscale analysis of the modification process of silty clay. The substitution of recycled silty clay for bentonite as a slag conditioner not only substantially reduces the cost of purchasing materials, but also considerably decreases the expenses associated with transportation and disposal of the soil discharged by EPBS.</div></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"22 ","pages":"Article e04158"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221450952401310X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The large amount of slag generated during the construction of earth pressure balance shield (EPBS) not only incurs significant disposal costs, but also exacerbates environmental pollution. To improve the utilization of the shield slag, silty clay with additive is proposed as a slag conditioner instead of bentonite. Firstly, various macroscopic properties of the bentonite and silty clay slurries are tested. Subsequently, the relationships between the macroscopic properties of the silty clay slurries containing additives and the modification mechanism are evaluated at microscopic, mesoscopic, and macroscopic scales by using infrared spectroscopy (IR), scanning electron microscope (SEM), and Zeta potential tests, respectively. Based on these tests, reasons for variations in modification effects of different slurries are identified. The results show that addition of 3 % sodium carbonate to the silty clay can effectively improve the rheological properties of the slurry. The modification mechanism of sodium carbonate involves the formation of hydrogen bonds between water molecules and inner surface hydroxyl groups within the lattice layer of kaolinite. This process significantly enhances the rheological properties of the silty clay slurry. Furthermore, sodium carbonate alters the contact relationships between the silty clay particles, which increases viscosity and reduces permeability of the slurry. Finally, sodium carbonate increases thickness of the electrical double layer of the silty clay particles. This allows the particles to bind more water molecules, therefore improving slurry-making capacity of the silty clay. This paper presents an innovative multiscale analysis of the modification process of silty clay. The substitution of recycled silty clay for bentonite as a slag conditioner not only substantially reduces the cost of purchasing materials, but also considerably decreases the expenses associated with transportation and disposal of the soil discharged by EPBS.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
19.40%
发文量
842
审稿时长
63 days
期刊介绍: Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation). The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信