Positive impact of the architecture of the oxygen electrode based on LNO and CGO for solid oxide electrochemical cells

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Michael Spann , Jérôme Laurencin , Elisabeth Djurado
{"title":"Positive impact of the architecture of the oxygen electrode based on LNO and CGO for solid oxide electrochemical cells","authors":"Michael Spann ,&nbsp;Jérôme Laurencin ,&nbsp;Elisabeth Djurado","doi":"10.1016/j.ssi.2024.116744","DOIUrl":null,"url":null,"abstract":"<div><div>The Ruddlesden-Popper phase, strontium- and cobalt-free lanthanum nickelate, La<sub>2</sub>NiO<sub>4+δ</sub> (LNO), is a mixed-conducting oxide phase and a promising oxygen electrode for SOCs (solid oxide electrochemical cells), thanks to its high diffusion of oxygen and its surface exchange properties. The electrochemical performance is strongly related to the charge transfer at the triple phase boundaries in the surface path and the excorporation/incorporation reaction in the bulk path. In this context, this study explores a strategy to increase the number of active sites in LNO-based electrodes, by designing nanostructured active functional layers and incorporating gadolinium-doped ceria (CGO). Two architectural scenarios are proposed compared to a pure LNO reference: a <em>uniform</em> distribution of CGO in the volume of the LNO and a continuous compositional <em>gradient</em>, both fabricated for the first time by electrostatic spray deposition (ESD).</div><div>These designs are investigated based on phase structure, microstructure, elemental chemical composition, and electrochemical properties using SEM-EDS, XRD, and electrochemical impedance spectroscopy. Polarization resistance values are discussed as a function of the distribution of contact points in the electrode volume and LNO crystallization. The results suggest that the presented approach to achieve CGO: LNO-based <em>gradient</em> electrodes allows controlling the localization of the interfaces between the two phases, thereby optimizing charge transfer.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116744"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002923","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Ruddlesden-Popper phase, strontium- and cobalt-free lanthanum nickelate, La2NiO4+δ (LNO), is a mixed-conducting oxide phase and a promising oxygen electrode for SOCs (solid oxide electrochemical cells), thanks to its high diffusion of oxygen and its surface exchange properties. The electrochemical performance is strongly related to the charge transfer at the triple phase boundaries in the surface path and the excorporation/incorporation reaction in the bulk path. In this context, this study explores a strategy to increase the number of active sites in LNO-based electrodes, by designing nanostructured active functional layers and incorporating gadolinium-doped ceria (CGO). Two architectural scenarios are proposed compared to a pure LNO reference: a uniform distribution of CGO in the volume of the LNO and a continuous compositional gradient, both fabricated for the first time by electrostatic spray deposition (ESD).
These designs are investigated based on phase structure, microstructure, elemental chemical composition, and electrochemical properties using SEM-EDS, XRD, and electrochemical impedance spectroscopy. Polarization resistance values are discussed as a function of the distribution of contact points in the electrode volume and LNO crystallization. The results suggest that the presented approach to achieve CGO: LNO-based gradient electrodes allows controlling the localization of the interfaces between the two phases, thereby optimizing charge transfer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信