Yu Zhang , Baodong Liu , Weiming Sun , Lingwen Meng
{"title":"Experimental and numerical study on longitudinal structural performance of soil-steel composite bridges","authors":"Yu Zhang , Baodong Liu , Weiming Sun , Lingwen Meng","doi":"10.1016/j.cscm.2024.e04148","DOIUrl":null,"url":null,"abstract":"<div><div>Soil-steel composite bridges (SSCBs) are commonly utilized as overpasses. In the majority of existing studies, the transverse structural performance of SSCBs is primarily focused on, while neglecting their longitudinal structural performance. The aims of this paper are to clarify the longitudinal properties and compensate for the paucity of research on the longitudinal structural performance of SSCBs. In current study, field tests were conducted on a SSCB case bridge in a mining area, both in the construction stage and post-construction stage. Subsequently, longitudinal differences in the structural settlements, deformations, and hoop strains were analyzed. Additionally, a refined three-dimensional finite element model was developed and verified to analyze the transfer behavior of soil pressure above the structure along the longitudinal direction. The results indicate that in the construction stage, the difference in the soil-covered height primarily account for the differences in structural performances along the longitudinal direction. At the end of backfilling, the settlements, deformations, and hoop strains in the middle section are all greater than those in the end sections. In the post-construction stage, further developments of longitudinal structural characteristics occur due to creep deformation of the foundation soil and disturbances from mining trucks. One year after construction, the structural characteristics have stabilized. The maximum settlement reaches −1.014 m and the maximum settlement difference reaches 0.365 m. The differential settlement ratio, at 0.62 %, remains within the 1 % limit specified in the CHBDC code. Due to longitudinal settlement differences, the soil pressure in the higher settlement zone is transferred to the lower settlement zone by the longitudinal soil arching effect, which benefits the load-bearing capacity of SSCBs.</div></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"22 ","pages":"Article e04148"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524013007","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-steel composite bridges (SSCBs) are commonly utilized as overpasses. In the majority of existing studies, the transverse structural performance of SSCBs is primarily focused on, while neglecting their longitudinal structural performance. The aims of this paper are to clarify the longitudinal properties and compensate for the paucity of research on the longitudinal structural performance of SSCBs. In current study, field tests were conducted on a SSCB case bridge in a mining area, both in the construction stage and post-construction stage. Subsequently, longitudinal differences in the structural settlements, deformations, and hoop strains were analyzed. Additionally, a refined three-dimensional finite element model was developed and verified to analyze the transfer behavior of soil pressure above the structure along the longitudinal direction. The results indicate that in the construction stage, the difference in the soil-covered height primarily account for the differences in structural performances along the longitudinal direction. At the end of backfilling, the settlements, deformations, and hoop strains in the middle section are all greater than those in the end sections. In the post-construction stage, further developments of longitudinal structural characteristics occur due to creep deformation of the foundation soil and disturbances from mining trucks. One year after construction, the structural characteristics have stabilized. The maximum settlement reaches −1.014 m and the maximum settlement difference reaches 0.365 m. The differential settlement ratio, at 0.62 %, remains within the 1 % limit specified in the CHBDC code. Due to longitudinal settlement differences, the soil pressure in the higher settlement zone is transferred to the lower settlement zone by the longitudinal soil arching effect, which benefits the load-bearing capacity of SSCBs.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.