Agricultural land use and reproductive behaviour constrain responses to summer thermal stress in a large herbivore

IF 4.9 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Noa Rigoudy , Nicolas Morellet , A.J. Mark Hewison , Arnaud Bonnet , Yannick Chaval , Bruno Lourtet , Joël Merlet , Simon Chamaillé-Jammes
{"title":"Agricultural land use and reproductive behaviour constrain responses to summer thermal stress in a large herbivore","authors":"Noa Rigoudy ,&nbsp;Nicolas Morellet ,&nbsp;A.J. Mark Hewison ,&nbsp;Arnaud Bonnet ,&nbsp;Yannick Chaval ,&nbsp;Bruno Lourtet ,&nbsp;Joël Merlet ,&nbsp;Simon Chamaillé-Jammes","doi":"10.1016/j.biocon.2024.110888","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural land use and climate change are major global threats to terrestrial biodiversity. However, their interactive effects on synanthropic species are only recently being addressed. Behavioural plasticity is the most likely candidate mechanism for coping with rapid environmental change, yet behavioural adjustments may be insufficient when multiple anthropogenic pressures, such as human land-use and rising temperatures, coincide with strong life-history constraints. We investigated how agricultural land use shaped the availability of thermal refuge and mediated responses to high temperatures during the mating season in roe deer (<em>Capreolus capreolus</em>), a large herbivore that is common in most European agricultural landscapes. We demonstrated that woodland provided more efficient thermal refuge than anthropogenic vegetation such as hedges or tall crops. The combination of high temperatures, agricultural land-use and reproductive constraints were dealt with differently by males and females. Females adjusted their habitat use and activity patterns to limit exposure to high temperatures, resulting in a greater loss in the availability of efficient cover habitat for females with little access to woodland. Males, however, did not modify their habitat use, but strongly decreased activity and distance travelled on hot days, probably due to strong reproductive constraints. We show that the extent to which behavioural plasticity mitigates the effects of high temperatures is context-dependent and may not always suffice in anthropized landscapes where thermal buffering habitats are rare. Restoring woodland patches and hedges, while considering how climate change modifies the use of substitute habitats shaped by human activities, will be key in promoting species' resilience within agricultural areas.</div></div>","PeriodicalId":55375,"journal":{"name":"Biological Conservation","volume":"302 ","pages":"Article 110888"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006320724004506","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Agricultural land use and climate change are major global threats to terrestrial biodiversity. However, their interactive effects on synanthropic species are only recently being addressed. Behavioural plasticity is the most likely candidate mechanism for coping with rapid environmental change, yet behavioural adjustments may be insufficient when multiple anthropogenic pressures, such as human land-use and rising temperatures, coincide with strong life-history constraints. We investigated how agricultural land use shaped the availability of thermal refuge and mediated responses to high temperatures during the mating season in roe deer (Capreolus capreolus), a large herbivore that is common in most European agricultural landscapes. We demonstrated that woodland provided more efficient thermal refuge than anthropogenic vegetation such as hedges or tall crops. The combination of high temperatures, agricultural land-use and reproductive constraints were dealt with differently by males and females. Females adjusted their habitat use and activity patterns to limit exposure to high temperatures, resulting in a greater loss in the availability of efficient cover habitat for females with little access to woodland. Males, however, did not modify their habitat use, but strongly decreased activity and distance travelled on hot days, probably due to strong reproductive constraints. We show that the extent to which behavioural plasticity mitigates the effects of high temperatures is context-dependent and may not always suffice in anthropized landscapes where thermal buffering habitats are rare. Restoring woodland patches and hedges, while considering how climate change modifies the use of substitute habitats shaped by human activities, will be key in promoting species' resilience within agricultural areas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Conservation
Biological Conservation 环境科学-环境科学
CiteScore
10.20
自引率
3.40%
发文量
295
审稿时长
61 days
期刊介绍: Biological Conservation is an international leading journal in the discipline of conservation biology. The journal publishes articles spanning a diverse range of fields that contribute to the biological, sociological, and economic dimensions of conservation and natural resource management. The primary aim of Biological Conservation is the publication of high-quality papers that advance the science and practice of conservation, or which demonstrate the application of conservation principles for natural resource management and policy. Therefore it will be of interest to a broad international readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信