Leveraging AI for enhanced alignment of national biodiversity targets with the global biodiversity goals

Nicole DeSantis , Christina Supples , Lea Phillips , Julien Pigot , Jamison Ervin , Toby Wade
{"title":"Leveraging AI for enhanced alignment of national biodiversity targets with the global biodiversity goals","authors":"Nicole DeSantis ,&nbsp;Christina Supples ,&nbsp;Lea Phillips ,&nbsp;Julien Pigot ,&nbsp;Jamison Ervin ,&nbsp;Toby Wade","doi":"10.1016/j.nbsj.2024.100198","DOIUrl":null,"url":null,"abstract":"<div><div>This research explores the innovative application of artificial intelligence (AI), specifically OpenAI's GPT-3.5 model, in assessing the alignment between National Biodiversity Targets (NBTs) and the Kunming-Montreal Global Biodiversity Framework (GBF). Addressing biodiversity loss requires aligning national efforts with global objectives, a complex task due to the vast amount of biodiversity data and the diversity of biodiversity strategies across countries. By leveraging AI, this study introduces a scalable, efficient method to evaluate the congruence between 599 NBTs from 26 countries and the GBF goals and targets. Our methodology combines traditional natural language processing techniques with large language model insights utilizing GPT-3.5 to examine the similarity between national and global biodiversity targets and identify recommendations to enhance target alignment. The study achieves two main objectives: 1) providing actionable insights for countries to accelerate alignment with the GBF through their National Biodiversity Strategy and Action Plan (NBSAP) Target Similarity Assessments, and 2) mapping the global landscape of biodiversity policy alignment to inform strategic planning for the 16th Biodiversity Conference of Parties (COP16). The analysis reveals strong alignment with GBF Goals A and B, as well as Targets 4, 10, and 14, while highlighting areas for improvement in gender equality, biosafety, and business sector engagement. This research demonstrates AI's capacity to streamline biodiversity policy alignment, offering specific guidance for nations to refine their biodiversity strategies. The study underscores the importance of human-centered, transparent AI applications in supporting global biodiversity goals, advocating for collaborative, multi-sectoral efforts to enhance policy coherence and achieve the ambitious objectives of the GBF.</div></div>","PeriodicalId":100945,"journal":{"name":"Nature-Based Solutions","volume":"7 ","pages":"Article 100198"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature-Based Solutions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772411524000892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the innovative application of artificial intelligence (AI), specifically OpenAI's GPT-3.5 model, in assessing the alignment between National Biodiversity Targets (NBTs) and the Kunming-Montreal Global Biodiversity Framework (GBF). Addressing biodiversity loss requires aligning national efforts with global objectives, a complex task due to the vast amount of biodiversity data and the diversity of biodiversity strategies across countries. By leveraging AI, this study introduces a scalable, efficient method to evaluate the congruence between 599 NBTs from 26 countries and the GBF goals and targets. Our methodology combines traditional natural language processing techniques with large language model insights utilizing GPT-3.5 to examine the similarity between national and global biodiversity targets and identify recommendations to enhance target alignment. The study achieves two main objectives: 1) providing actionable insights for countries to accelerate alignment with the GBF through their National Biodiversity Strategy and Action Plan (NBSAP) Target Similarity Assessments, and 2) mapping the global landscape of biodiversity policy alignment to inform strategic planning for the 16th Biodiversity Conference of Parties (COP16). The analysis reveals strong alignment with GBF Goals A and B, as well as Targets 4, 10, and 14, while highlighting areas for improvement in gender equality, biosafety, and business sector engagement. This research demonstrates AI's capacity to streamline biodiversity policy alignment, offering specific guidance for nations to refine their biodiversity strategies. The study underscores the importance of human-centered, transparent AI applications in supporting global biodiversity goals, advocating for collaborative, multi-sectoral efforts to enhance policy coherence and achieve the ambitious objectives of the GBF.
利用人工智能加强国家生物多样性目标与全球生物多样性目标的一致性
本研究探讨了人工智能(AI)的创新应用,特别是OpenAI的GPT-3.5模型,在评估国家生物多样性目标(nbt)与昆明-蒙特利尔全球生物多样性框架(GBF)之间的一致性方面。解决生物多样性丧失问题需要使国家努力与全球目标保持一致,这是一项复杂的任务,因为生物多样性数据量巨大,各国的生物多样性战略也各不相同。通过利用人工智能,本研究引入了一种可扩展的、有效的方法来评估来自26个国家的599个nbt与GBF目标和具体目标之间的一致性。我们的方法将传统的自然语言处理技术与利用GPT-3.5的大型语言模型见解相结合,以检查国家和全球生物多样性目标之间的相似性,并确定加强目标一致性的建议。该研究实现了两个主要目标:1)为各国通过其国家生物多样性战略和行动计划(NBSAP)目标相似性评估加速与GBF保持一致提供可操作的见解;2)绘制生物多样性政策协调的全球格局,为第16届生物多样性缔约方大会(COP16)的战略规划提供信息。分析显示,该目标与《GBF》目标A和B以及具体目标4、10和14高度一致,同时强调了在性别平等、生物安全和商业部门参与方面有待改进的领域。这项研究表明,人工智能有能力简化生物多样性政策调整,为各国完善其生物多样性战略提供具体指导。该研究强调了以人为本、透明的人工智能应用在支持全球生物多样性目标方面的重要性,倡导开展多部门合作,加强政策一致性,实现GBF的宏伟目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信