A label-free dielectric-modulated biosensor using split-source double gate TFET

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Basudha Dewan , Shalini Chaudhary , Devendrapal Singh
{"title":"A label-free dielectric-modulated biosensor using split-source double gate TFET","authors":"Basudha Dewan ,&nbsp;Shalini Chaudhary ,&nbsp;Devendrapal Singh","doi":"10.1016/j.micrna.2024.208066","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents split source double gate (SSDG) dielectric modulated (DM) Tunnel Field Effect Transistor (TFET) for label free biosensing. The nanogap cavity is considered near the source region to lodge an enormous amount of biological molecules and HfO<sub>2</sub> is considered towards the drain side. In SSDG-DMTFET the source is split in two separate sections. The lower half is formed out of Germanium, whereas the upper part is comprised of Silicon. Reduced current leakage, improved inclination with respect to SS, and decreased ambipolar conductance are the results of these hetero-structural modifications. It also provides a comparatively improvement in current sensitivity <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and SS due to its enhanced tunneling junction area. The <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is evaluated for fully filled nanogap cavity under the neutral biomolecules with wide variation in dielectric constant (k). We have reported the Subthreshold Swing (SS), input characteristics, output characteristics, energy band diagram, threshold voltage <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>T</mi><mi>H</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span> ratio by varying k from 1 to 12 for uncharged biomolecules within the nanogap. The performance is also evaluated for partially and non-uniformly filled nanogap with wide variation in dielectric constant (k). Furthermore, sensitivity of SSDG-DMTFET is compared with the sensitivity of existing FET/TFET based biosensors.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"199 ","pages":"Article 208066"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324003169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents split source double gate (SSDG) dielectric modulated (DM) Tunnel Field Effect Transistor (TFET) for label free biosensing. The nanogap cavity is considered near the source region to lodge an enormous amount of biological molecules and HfO2 is considered towards the drain side. In SSDG-DMTFET the source is split in two separate sections. The lower half is formed out of Germanium, whereas the upper part is comprised of Silicon. Reduced current leakage, improved inclination with respect to SS, and decreased ambipolar conductance are the results of these hetero-structural modifications. It also provides a comparatively improvement in current sensitivity Sn and SS due to its enhanced tunneling junction area. The Sn is evaluated for fully filled nanogap cavity under the neutral biomolecules with wide variation in dielectric constant (k). We have reported the Subthreshold Swing (SS), input characteristics, output characteristics, energy band diagram, threshold voltage (VTH) and ION/IOFF ratio by varying k from 1 to 12 for uncharged biomolecules within the nanogap. The performance is also evaluated for partially and non-uniformly filled nanogap with wide variation in dielectric constant (k). Furthermore, sensitivity of SSDG-DMTFET is compared with the sensitivity of existing FET/TFET based biosensors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信