Quasi-Monte Carlo integration over Rs based on digital nets

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Josef Dick , Friedrich Pillichshammer
{"title":"Quasi-Monte Carlo integration over Rs based on digital nets","authors":"Josef Dick ,&nbsp;Friedrich Pillichshammer","doi":"10.1016/j.cam.2024.116451","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses <span><math><mi>φ</mi></math></span>-weighted integration of functions over the <span><math><mi>s</mi></math></span>-dimensional Euclidean space using quasi-Monte Carlo (QMC) rules combined with an inversion method, where the probability density function (PDF) <span><math><mi>φ</mi></math></span> is of product form, i.e., a product of uni-variate PDFs <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each coordinate <span><math><mi>i</mi></math></span> in <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>s</mi><mo>}</mo></mrow></math></span>.</div><div>The space of integrands is specified by means of a <span><math><mi>γ</mi></math></span>-weighted <span><math><mi>p</mi></math></span>-norm, <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, which involves coordinate weights <span><math><mi>γ</mi></math></span>, the partial derivatives of order up to one of the integrands as well as additional weight functions <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and the PDFs <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. The coordinate weights <span><math><mi>γ</mi></math></span> model the importance of different coordinates or groups of coordinates in the sense of Sloan and Woźniakowski, and the weight functions <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are additional parameters of the space which describe the decay of the partial derivatives of the integrands. Fast decaying weights <span><math><mrow><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>→</mo><mo>±</mo><mi>∞</mi></mrow></math></span> enlarge the space of functions with finite norm, but decrease the convergence rate of the worst-case error of the proposed algorithms.</div><div>Our algorithms for integration use digitally shifted digital nets in combination with an inversion method. We study the (root) mean squared worst-case error with respect to random digital shifts. The obtained error bounds depend on the choice of weight functions <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and coordinate weights <span><math><mi>γ</mi></math></span>. Under certain conditions on <span><math><mi>γ</mi></math></span>, these bounds hold uniformly for all dimensions <span><math><mi>s</mi></math></span>.</div><div>Numerical experiments demonstrate the effectiveness of the proposed algorithms.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"462 ","pages":"Article 116451"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272400699X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses φ-weighted integration of functions over the s-dimensional Euclidean space using quasi-Monte Carlo (QMC) rules combined with an inversion method, where the probability density function (PDF) φ is of product form, i.e., a product of uni-variate PDFs φi for each coordinate i in {1,,s}.
The space of integrands is specified by means of a γ-weighted p-norm, p1, which involves coordinate weights γ, the partial derivatives of order up to one of the integrands as well as additional weight functions ψi and the PDFs φi. The coordinate weights γ model the importance of different coordinates or groups of coordinates in the sense of Sloan and Woźniakowski, and the weight functions ψi are additional parameters of the space which describe the decay of the partial derivatives of the integrands. Fast decaying weights ψi(x) for x± enlarge the space of functions with finite norm, but decrease the convergence rate of the worst-case error of the proposed algorithms.
Our algorithms for integration use digitally shifted digital nets in combination with an inversion method. We study the (root) mean squared worst-case error with respect to random digital shifts. The obtained error bounds depend on the choice of weight functions ψi and coordinate weights γ. Under certain conditions on γ, these bounds hold uniformly for all dimensions s.
Numerical experiments demonstrate the effectiveness of the proposed algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信