Isotropization and complexity based extended Krori–Barua and Tolman IV Rastall models under the effect of electromagnetic field

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Tayyab Naseer
{"title":"Isotropization and complexity based extended Krori–Barua and Tolman IV Rastall models under the effect of electromagnetic field","authors":"Tayyab Naseer","doi":"10.1016/j.astropartphys.2024.103073","DOIUrl":null,"url":null,"abstract":"<div><div>Three different exact solutions to the gravitational equations are formulated in this paper in the context of Rastall theory using the gravitational decoupling strategy. For doing so, the anisotropic spherical interior fluid distribution is assumed as a seed source characterized by the corresponding Lagrangian. I then modify the field equations by introducing an additional source which is gravitationally coupled with the former fluid setup. Since this approach makes the Rastall equations more complex, I use the MGD scheme to tackle this, dividing these equations into two systems. The Krori–Barua and Tolman IV spacetimes are taken into account to solve the first system, describing an initial anisotropic fluid. The metric potentials associated with these solutions contain multiple constants which are determined with the help of boundary conditions. Furthermore, I work out the solution for the second system through different well-known constraints. Afterwards, the estimated data of a compact star <span><math><mrow><mi>L</mi><mi>M</mi><mi>C</mi><mspace></mspace><mi>X</mi><mo>−</mo><mn>4</mn></mrow></math></span> is considered to explore the feasibility of the developed solutions through graphical interpretation. It is concluded that all the resulting models show physically existing profiles under the variation of certain parameters.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"166 ","pages":"Article 103073"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524001506","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Three different exact solutions to the gravitational equations are formulated in this paper in the context of Rastall theory using the gravitational decoupling strategy. For doing so, the anisotropic spherical interior fluid distribution is assumed as a seed source characterized by the corresponding Lagrangian. I then modify the field equations by introducing an additional source which is gravitationally coupled with the former fluid setup. Since this approach makes the Rastall equations more complex, I use the MGD scheme to tackle this, dividing these equations into two systems. The Krori–Barua and Tolman IV spacetimes are taken into account to solve the first system, describing an initial anisotropic fluid. The metric potentials associated with these solutions contain multiple constants which are determined with the help of boundary conditions. Furthermore, I work out the solution for the second system through different well-known constraints. Afterwards, the estimated data of a compact star LMCX4 is considered to explore the feasibility of the developed solutions through graphical interpretation. It is concluded that all the resulting models show physically existing profiles under the variation of certain parameters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信