Ambrose C. Eze , Romanus N.C. Eze , Augustine E. Chukwude , Fidelis O. Madu
{"title":"On the accretion flow and mass accretion rates/fluctuations in black hole candidate; MAXI J1535–571","authors":"Ambrose C. Eze , Romanus N.C. Eze , Augustine E. Chukwude , Fidelis O. Madu","doi":"10.1016/j.astropartphys.2024.103076","DOIUrl":null,"url":null,"abstract":"<div><div>MAXI J1535–571 underwent dramatic and transient outbursts accompanied by accretion flow. Hard X-radiations are produced due to thermal–and inverse–comptonization of soft photons by high-temperature electrons. The variations/fluctuations of components of the accretion flow rates and their fractional X-ray emissions/flux variability contributions at different epochs infer the spectral states. In this study, we utilized MAXI J1535–571 data observed by the three X-ray missions/detectors (<em>MAXI/GSC, NuSTAR</em>, and <em>SWIFT/BAT</em>) on the same and/or close-in epochs. Each detector's data were separately reduced and analyzed using HEASoft v6.28 and its software packages alongside the standard pipeline product software of each detector. Thereafter, the MAXI J1535–571 data were simultaneously fitted in <em>XSPEC</em> version 12.10.1f and modelled using selected analytical and phenomenological models (AP-model) to examine the photon index–N<sub>BMC</sub> saturation effect and variations of components of the accretion flow rates. Moreover, the <em>TCAF</em> model was used on MAXI J1535–571 data to determine the correlation of components of the accretion flow rates. The <em>AP</em>– and <em>TCAF</em>–models gave a statistically acceptable fit with a reduced Chi-squared value of ≤ 1.2, and their spectral results were compared. The best-fit photon index of ∼ 2.0–2.20 affirms that MAXI J1535–571 is in its rising phase; the hard-intermediate state. The correlation of mass accretion rates suggests that their variations/fluctuations could be responsible for the dynamics and geometry of the accretion flow.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"166 ","pages":"Article 103076"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524001531","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
MAXI J1535–571 underwent dramatic and transient outbursts accompanied by accretion flow. Hard X-radiations are produced due to thermal–and inverse–comptonization of soft photons by high-temperature electrons. The variations/fluctuations of components of the accretion flow rates and their fractional X-ray emissions/flux variability contributions at different epochs infer the spectral states. In this study, we utilized MAXI J1535–571 data observed by the three X-ray missions/detectors (MAXI/GSC, NuSTAR, and SWIFT/BAT) on the same and/or close-in epochs. Each detector's data were separately reduced and analyzed using HEASoft v6.28 and its software packages alongside the standard pipeline product software of each detector. Thereafter, the MAXI J1535–571 data were simultaneously fitted in XSPEC version 12.10.1f and modelled using selected analytical and phenomenological models (AP-model) to examine the photon index–NBMC saturation effect and variations of components of the accretion flow rates. Moreover, the TCAF model was used on MAXI J1535–571 data to determine the correlation of components of the accretion flow rates. The AP– and TCAF–models gave a statistically acceptable fit with a reduced Chi-squared value of ≤ 1.2, and their spectral results were compared. The best-fit photon index of ∼ 2.0–2.20 affirms that MAXI J1535–571 is in its rising phase; the hard-intermediate state. The correlation of mass accretion rates suggests that their variations/fluctuations could be responsible for the dynamics and geometry of the accretion flow.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.