A novel AI-driven model for student dropout risk analysis with explainable AI insights

Q1 Social Sciences
Sumaya Mustofa, Yousuf Rayhan Emon, Sajib Bin Mamun, Shabnur Anonna Akhy, Md Taimur Ahad
{"title":"A novel AI-driven model for student dropout risk analysis with explainable AI insights","authors":"Sumaya Mustofa,&nbsp;Yousuf Rayhan Emon,&nbsp;Sajib Bin Mamun,&nbsp;Shabnur Anonna Akhy,&nbsp;Md Taimur Ahad","doi":"10.1016/j.caeai.2024.100352","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing number of students dropping out of school due to social, economic, personal (e.g., depression or persistent failure), and health issues is a growing concern for governments, educators, and guardians. Identifying and analyzing the factors contributing to student dropout is crucial. Various machine learning, analytical, and statistical models have been proposed to address this issue. However, the existing models have several limitations in providing a precise and automated system for predicting dropout risk and analyzing the factors behind this. Besides, generating a balanced dataset is also a limitation as ‘Dropouts’ are less than the ‘Non-dropouts’. Moreover, selecting significant features contributing to student dropout and non-dropout is also very important in developing a model. However, this study introduces a comprehensive machine learning (ML) and explainable AI (XAI) based methodology to address these limitations. Firstly, the imbalanced dataset problem was handled using the Upsampling technique by adjusting the minority class ‘Dropout’. Then, the feature selection method Recursive Feature Elimination (RFE) is used with Cross-Validation (CV) as the RFE-CV method to select the most significant features. After preprocessing, this study proposed a hybrid model named the Hybrid Logistic Regression and Neural Network (HLRNN) model, which predicts student dropout with 96% accuracy, outperforming other experimented models as well as the parent models Logistic Regression and Artificial Neural Network with 2% and 3% accuracy. Finally, the XAI model The SHapley Additive exPlanations (SHAP), and Local Interpretable Model-agnostic Explanations (LIME) are deployed to analyze the risk factors associated with student dropout. This approach aims to assist institutions and educational stakeholders in formulating policies for student retention, enabling early intervention to reduce dropout rates.</div></div>","PeriodicalId":34469,"journal":{"name":"Computers and Education Artificial Intelligence","volume":"8 ","pages":"Article 100352"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666920X24001553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing number of students dropping out of school due to social, economic, personal (e.g., depression or persistent failure), and health issues is a growing concern for governments, educators, and guardians. Identifying and analyzing the factors contributing to student dropout is crucial. Various machine learning, analytical, and statistical models have been proposed to address this issue. However, the existing models have several limitations in providing a precise and automated system for predicting dropout risk and analyzing the factors behind this. Besides, generating a balanced dataset is also a limitation as ‘Dropouts’ are less than the ‘Non-dropouts’. Moreover, selecting significant features contributing to student dropout and non-dropout is also very important in developing a model. However, this study introduces a comprehensive machine learning (ML) and explainable AI (XAI) based methodology to address these limitations. Firstly, the imbalanced dataset problem was handled using the Upsampling technique by adjusting the minority class ‘Dropout’. Then, the feature selection method Recursive Feature Elimination (RFE) is used with Cross-Validation (CV) as the RFE-CV method to select the most significant features. After preprocessing, this study proposed a hybrid model named the Hybrid Logistic Regression and Neural Network (HLRNN) model, which predicts student dropout with 96% accuracy, outperforming other experimented models as well as the parent models Logistic Regression and Artificial Neural Network with 2% and 3% accuracy. Finally, the XAI model The SHapley Additive exPlanations (SHAP), and Local Interpretable Model-agnostic Explanations (LIME) are deployed to analyze the risk factors associated with student dropout. This approach aims to assist institutions and educational stakeholders in formulating policies for student retention, enabling early intervention to reduce dropout rates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.80
自引率
0.00%
发文量
66
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信