Black carbon aerosols impact snowfall over the Tibetan Plateau

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Ye Zhou , Junhua Yang , Shichang Kang , Yuling Hu , Xintong Chen , Mian Xu , Mengmeng Ma
{"title":"Black carbon aerosols impact snowfall over the Tibetan Plateau","authors":"Ye Zhou ,&nbsp;Junhua Yang ,&nbsp;Shichang Kang ,&nbsp;Yuling Hu ,&nbsp;Xintong Chen ,&nbsp;Mian Xu ,&nbsp;Mengmeng Ma","doi":"10.1016/j.gsf.2024.101978","DOIUrl":null,"url":null,"abstract":"<div><div>Snowfall is the primary form of cold-season precipitation over the Tibetan Plateau (TP), crucial for the maintenance of glaciers and snow cover, affecting regional climates and water resources availability. Through an integrative analysis of observations, numerical simulations, and statistical analyses, we found that the spatiotemporal distribution of snowfall across the TP is significantly influenced by black carbon (BC) aerosols from South Asia and the TP. BC affects the snowfall process through multiple mechanisms. Specifically, BC significantly raises atmospheric temperature over the TP, thereby reducing snowfall, particularly in the central TP during autumn, with reductions reaching approximately − 9 mm water equivalent month<sup>−1</sup>. Moreover, BC enhances cold-season moisture transport from the Bay of Bengal, increasing moisture flux in the southeastern TP and thereby augmenting snowfall in that area by up to 5 mm water equivalent month<sup>−1</sup>. This study elucidates the complex impact of BC on the spatial–temporal snowfall patterns across the TP and provides important insights into the sustainable development of water resources in the region amid ongoing climate change.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 2","pages":"Article 101978"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124002020","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Snowfall is the primary form of cold-season precipitation over the Tibetan Plateau (TP), crucial for the maintenance of glaciers and snow cover, affecting regional climates and water resources availability. Through an integrative analysis of observations, numerical simulations, and statistical analyses, we found that the spatiotemporal distribution of snowfall across the TP is significantly influenced by black carbon (BC) aerosols from South Asia and the TP. BC affects the snowfall process through multiple mechanisms. Specifically, BC significantly raises atmospheric temperature over the TP, thereby reducing snowfall, particularly in the central TP during autumn, with reductions reaching approximately − 9 mm water equivalent month−1. Moreover, BC enhances cold-season moisture transport from the Bay of Bengal, increasing moisture flux in the southeastern TP and thereby augmenting snowfall in that area by up to 5 mm water equivalent month−1. This study elucidates the complex impact of BC on the spatial–temporal snowfall patterns across the TP and provides important insights into the sustainable development of water resources in the region amid ongoing climate change.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信