{"title":"Amorphous structures and statistical sampling in first-principles molecular dynamics: The prototypical case of glassy GeSe3","authors":"Evelyne Martin, Carlo Massobrio","doi":"10.1016/j.jnoncrysol.2025.123415","DOIUrl":null,"url":null,"abstract":"<div><div>The atomic structure of glassy GeSe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is obtained via first-principles molecular dynamics (FPMD) calculations by employing a simulation cell of 480 atoms. We complement and improve results previously published (Ref. Micoulaut et al., (2013)) on a smaller system (120 atoms) characterized by a marked disagreement with neutron scattering experiments on the occurrence of Ge<span><math><mo>−</mo></math></span>Ge homonuclear bonds. The present calculations show that a finite number of Ge<span><math><mo>−</mo></math></span>Ge bonds may occur on specific trajectories depending on the initial conditions selected for the quench from the liquid state. This conclusion is substantiated by the observation that the first trajectory we produced resulted in a negligible number of such homonuclear bonds, while the second did feature some of them. In terms of tetrahedral connections (either edge-sharing or corner-sharing) FPMD results appear to overestimate the edge-sharing ones, the extent of the disagreement depending on the reference experimental probe employed for the comparison (neutron scattering or NMR).</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"653 ","pages":"Article 123415"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309325000316","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The atomic structure of glassy GeSe is obtained via first-principles molecular dynamics (FPMD) calculations by employing a simulation cell of 480 atoms. We complement and improve results previously published (Ref. Micoulaut et al., (2013)) on a smaller system (120 atoms) characterized by a marked disagreement with neutron scattering experiments on the occurrence of GeGe homonuclear bonds. The present calculations show that a finite number of GeGe bonds may occur on specific trajectories depending on the initial conditions selected for the quench from the liquid state. This conclusion is substantiated by the observation that the first trajectory we produced resulted in a negligible number of such homonuclear bonds, while the second did feature some of them. In terms of tetrahedral connections (either edge-sharing or corner-sharing) FPMD results appear to overestimate the edge-sharing ones, the extent of the disagreement depending on the reference experimental probe employed for the comparison (neutron scattering or NMR).
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.