Amorphous structures and statistical sampling in first-principles molecular dynamics: The prototypical case of glassy GeSe3

IF 3.2 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Evelyne Martin, Carlo Massobrio
{"title":"Amorphous structures and statistical sampling in first-principles molecular dynamics: The prototypical case of glassy GeSe3","authors":"Evelyne Martin,&nbsp;Carlo Massobrio","doi":"10.1016/j.jnoncrysol.2025.123415","DOIUrl":null,"url":null,"abstract":"<div><div>The atomic structure of glassy GeSe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> is obtained via first-principles molecular dynamics (FPMD) calculations by employing a simulation cell of 480 atoms. We complement and improve results previously published (Ref. Micoulaut et al., (2013)) on a smaller system (120 atoms) characterized by a marked disagreement with neutron scattering experiments on the occurrence of Ge<span><math><mo>−</mo></math></span>Ge homonuclear bonds. The present calculations show that a finite number of Ge<span><math><mo>−</mo></math></span>Ge bonds may occur on specific trajectories depending on the initial conditions selected for the quench from the liquid state. This conclusion is substantiated by the observation that the first trajectory we produced resulted in a negligible number of such homonuclear bonds, while the second did feature some of them. In terms of tetrahedral connections (either edge-sharing or corner-sharing) FPMD results appear to overestimate the edge-sharing ones, the extent of the disagreement depending on the reference experimental probe employed for the comparison (neutron scattering or NMR).</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"653 ","pages":"Article 123415"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309325000316","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The atomic structure of glassy GeSe3 is obtained via first-principles molecular dynamics (FPMD) calculations by employing a simulation cell of 480 atoms. We complement and improve results previously published (Ref. Micoulaut et al., (2013)) on a smaller system (120 atoms) characterized by a marked disagreement with neutron scattering experiments on the occurrence of GeGe homonuclear bonds. The present calculations show that a finite number of GeGe bonds may occur on specific trajectories depending on the initial conditions selected for the quench from the liquid state. This conclusion is substantiated by the observation that the first trajectory we produced resulted in a negligible number of such homonuclear bonds, while the second did feature some of them. In terms of tetrahedral connections (either edge-sharing or corner-sharing) FPMD results appear to overestimate the edge-sharing ones, the extent of the disagreement depending on the reference experimental probe employed for the comparison (neutron scattering or NMR).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Non-crystalline Solids
Journal of Non-crystalline Solids 工程技术-材料科学:硅酸盐
CiteScore
6.50
自引率
11.40%
发文量
576
审稿时长
35 days
期刊介绍: The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid. In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信