How to site grassed areas to reduce agricultural erosion efficiently? A computational analysis in Finland

IF 3.1 2区 农林科学 Q2 SOIL SCIENCE
M. Tähtikarhu, T.A. Räsänen, J. Uusi-Kämppä, J. Hyväluoma
{"title":"How to site grassed areas to reduce agricultural erosion efficiently? A computational analysis in Finland","authors":"M. Tähtikarhu,&nbsp;T.A. Räsänen,&nbsp;J. Uusi-Kämppä,&nbsp;J. Hyväluoma","doi":"10.1016/j.geodrs.2024.e00904","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial patterns of land-cover and agricultural operations have clear impacts on soil erosion. Allocating a portion of cultivated area for grass is a widely applied strategy to control erosion. However, it is still unclear how much and where grassed area should be spatially targeted in different landscapes to control erosion efficiently. To address this challenge, we estimate the potential of high-resolution RUSLE-based spatial targeting of grassed areas to improve erosion mitigation in two topographically different catchments in southern Finland. Erosion reductions of 1) policy-based targeting (buffer strips along main streams according to current CAP strategy) were compared with 2) RUSLE-targeted grassed areas (based on the highest computed erosion values within field parcels and sub-catchments). Furthermore, we computationally explored 3) how different rates of optimally located grass areas affected erosion and 4) how the areas could be computationally processed to continuous entities. The erosion reductions were estimated with 2 × 2 m<sup>2</sup> resolution RUSLE computations in all the scenarios. The RUSLE-targeted grassed areas demonstrated greater erosion reductions compared to the policy-based siting of grass areas along riparian fields. With optimal targeting, erosion risks could potentially be reduced up to 24 percentage points (up to 46 % erosion reduction), compared to the buffer strips. Increasing optimally targeted grassed area gradually from 0 to 100 % decreased erosion non-linearly. The largest share of erosion was generated in disproportionally small land areas (∼20 % of the land area). The location of the hotspots in relation to the streams varied between the sub-catchments and field parcels. These quantifications demonstrate the potential value of models for targeted landscape scale spatial erosion management. A more comprehensive assessment of erosion mitigation could benefit of improved empirical validation and consideration of other aspects of erosion and sediment transport, such as local drainage efficiency and reduction of erosion during flooding of rivers.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"40 ","pages":"Article e00904"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009424001512","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial patterns of land-cover and agricultural operations have clear impacts on soil erosion. Allocating a portion of cultivated area for grass is a widely applied strategy to control erosion. However, it is still unclear how much and where grassed area should be spatially targeted in different landscapes to control erosion efficiently. To address this challenge, we estimate the potential of high-resolution RUSLE-based spatial targeting of grassed areas to improve erosion mitigation in two topographically different catchments in southern Finland. Erosion reductions of 1) policy-based targeting (buffer strips along main streams according to current CAP strategy) were compared with 2) RUSLE-targeted grassed areas (based on the highest computed erosion values within field parcels and sub-catchments). Furthermore, we computationally explored 3) how different rates of optimally located grass areas affected erosion and 4) how the areas could be computationally processed to continuous entities. The erosion reductions were estimated with 2 × 2 m2 resolution RUSLE computations in all the scenarios. The RUSLE-targeted grassed areas demonstrated greater erosion reductions compared to the policy-based siting of grass areas along riparian fields. With optimal targeting, erosion risks could potentially be reduced up to 24 percentage points (up to 46 % erosion reduction), compared to the buffer strips. Increasing optimally targeted grassed area gradually from 0 to 100 % decreased erosion non-linearly. The largest share of erosion was generated in disproportionally small land areas (∼20 % of the land area). The location of the hotspots in relation to the streams varied between the sub-catchments and field parcels. These quantifications demonstrate the potential value of models for targeted landscape scale spatial erosion management. A more comprehensive assessment of erosion mitigation could benefit of improved empirical validation and consideration of other aspects of erosion and sediment transport, such as local drainage efficiency and reduction of erosion during flooding of rivers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma Regional
Geoderma Regional Agricultural and Biological Sciences-Soil Science
CiteScore
6.10
自引率
7.30%
发文量
122
审稿时长
76 days
期刊介绍: Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信