Faster topsoil organic matter transformation accompanies long-term carbon preservation in virgin Chernozems

IF 3.1 2区 农林科学 Q2 SOIL SCIENCE
Alla Yu. Yurova , M.A. Smirnova , D.N. Kozlov , D.R. Bardashev , N.I. Lozbenev , V.M. Stepanenko
{"title":"Faster topsoil organic matter transformation accompanies long-term carbon preservation in virgin Chernozems","authors":"Alla Yu. Yurova ,&nbsp;M.A. Smirnova ,&nbsp;D.N. Kozlov ,&nbsp;D.R. Bardashev ,&nbsp;N.I. Lozbenev ,&nbsp;V.M. Stepanenko","doi":"10.1016/j.geodrs.2024.e00914","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines soil organic carbon (SOC) dynamics in different soil types across a micro-topographical gradient, focusing on topsoil SOC stabilization and turnover rates in virgin Chernozems. The thermodynamic origin of differences in SOC decomposability (henceforth referred to as “quality”, or “q”) between soil types is explained using a Q model that treats quality as a continuous variable rather than assuming the presence of discrete SOC pools. The model's calibration is focused on enabling effective assessment of overall SOC stocks in the topsoil (the topmost 10 cm) and the total carbon stock in the uppermost 50 cm while using radiocarbon turnover rates as secondary constraints that may be needed due to limited data availability. The SOC turnover time in the topsoil determined by modeling the SOC quality distribution function was shown to agree well with empirical findings from similar study sites, indicating that SOC turnover times are around 6–10 years in surface layers but millennia in deeper layers. This reinforces the importance of distinguishing between topsoil and subsoil carbon stocks and their respective stabilization mechanisms in Chernozems. The analysis also highlights the influence of soil temperature and moisture conditions on soil organic carbon (SOC) dynamics: high topsoil moisture levels due to lateral water inputs increase SOC stabilization and thus reduce q, so wetter sites have enhanced carbon stocks. This outcome aligns with existing theories of humification in which water availability emerges as a crucial factor influencing SOC preservation and stabilization. Wetter soils also exhibit reduced decomposition due to lower temperature. This interplay between moisture, temperature, and microbial respiration rates necessitates a reevaluation of conventional beliefs about the behavior of SOC in different water regimes that stress the impact of moisture on soil respiration but not SOC stabilization. These findings also highlight the need to account for microtopographic variation, especially in semi-arid regions, in soil management programs seeking to optimize SOC retention and overall soil health. The insights into SOC dynamics presented here will be valuable for improving soil management strategies to enhance carbon sequestration in various soil types under changing climatic conditions.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"40 ","pages":"Article e00914"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009424001615","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines soil organic carbon (SOC) dynamics in different soil types across a micro-topographical gradient, focusing on topsoil SOC stabilization and turnover rates in virgin Chernozems. The thermodynamic origin of differences in SOC decomposability (henceforth referred to as “quality”, or “q”) between soil types is explained using a Q model that treats quality as a continuous variable rather than assuming the presence of discrete SOC pools. The model's calibration is focused on enabling effective assessment of overall SOC stocks in the topsoil (the topmost 10 cm) and the total carbon stock in the uppermost 50 cm while using radiocarbon turnover rates as secondary constraints that may be needed due to limited data availability. The SOC turnover time in the topsoil determined by modeling the SOC quality distribution function was shown to agree well with empirical findings from similar study sites, indicating that SOC turnover times are around 6–10 years in surface layers but millennia in deeper layers. This reinforces the importance of distinguishing between topsoil and subsoil carbon stocks and their respective stabilization mechanisms in Chernozems. The analysis also highlights the influence of soil temperature and moisture conditions on soil organic carbon (SOC) dynamics: high topsoil moisture levels due to lateral water inputs increase SOC stabilization and thus reduce q, so wetter sites have enhanced carbon stocks. This outcome aligns with existing theories of humification in which water availability emerges as a crucial factor influencing SOC preservation and stabilization. Wetter soils also exhibit reduced decomposition due to lower temperature. This interplay between moisture, temperature, and microbial respiration rates necessitates a reevaluation of conventional beliefs about the behavior of SOC in different water regimes that stress the impact of moisture on soil respiration but not SOC stabilization. These findings also highlight the need to account for microtopographic variation, especially in semi-arid regions, in soil management programs seeking to optimize SOC retention and overall soil health. The insights into SOC dynamics presented here will be valuable for improving soil management strategies to enhance carbon sequestration in various soil types under changing climatic conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma Regional
Geoderma Regional Agricultural and Biological Sciences-Soil Science
CiteScore
6.10
自引率
7.30%
发文量
122
审稿时长
76 days
期刊介绍: Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信