Molecular dynamics simulation and curing kinetics of recycled PET /PEGc toughened epoxy resin

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED
Yanyou Huang, Liangdong Ye, Qiaoyan Wei, Dacheng Li, Zengju Wu, Liling Zhang, Chuanheng Yu, Ziwei Li, Shaorong Lu
{"title":"Molecular dynamics simulation and curing kinetics of recycled PET /PEGc toughened epoxy resin","authors":"Yanyou Huang,&nbsp;Liangdong Ye,&nbsp;Qiaoyan Wei,&nbsp;Dacheng Li,&nbsp;Zengju Wu,&nbsp;Liling Zhang,&nbsp;Chuanheng Yu,&nbsp;Ziwei Li,&nbsp;Shaorong Lu","doi":"10.1016/j.reactfunctpolym.2024.106142","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the toughness of epoxy resin (EP) and optimizing the recovery of polyethylene terephthalate (PET) constitute significant challenges in current product manufacturing and environmental protection domains. In this work, toughening of epoxy resin was studied using recycled polyethylene terephthalate (rPET) as toughening agent and multi-carboxyl polyethylene glycol (PEGc) synthesized from polyethylene glycol and trimellitic anhydride as a modifier. Mechanical property tests indicated that the addition of 6 phr of rPET increased the impact strength of the epoxy resin from 6.77 ± 2.26 kJ/m<sup>2</sup> to 19.10 ± 3.53 kJ/m<sup>2</sup>. Moreover, the further addition of PEGc could produce a significant toughening effect with rPET. Specifically, the impact strength, tensile strength, and elastic modulus of the epoxy resin containing 6 phr of rPET and 15 phr of PEGc increased by 318.8 %, 13.9 %, and 23.9 %, respectively, compared with those of pure EP. The significant toughening effect is attributed to the skeleton provided by rPET and flexible molecular chains provided by PEGc. Meanwhile, the results of molecular dynamics simulation confirmed that PEGc can effectively enhance the modulus of rPET/EP composites. Through the curing kinetic parameters obtained from non-isothermal DSC tests, the Kamal autocatalytic model was found to better describe the curing reaction process of the epoxy composites. This work provides a low-cost route for fabricating epoxy composites with excellent toughness.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"207 ","pages":"Article 106142"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824003171","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the toughness of epoxy resin (EP) and optimizing the recovery of polyethylene terephthalate (PET) constitute significant challenges in current product manufacturing and environmental protection domains. In this work, toughening of epoxy resin was studied using recycled polyethylene terephthalate (rPET) as toughening agent and multi-carboxyl polyethylene glycol (PEGc) synthesized from polyethylene glycol and trimellitic anhydride as a modifier. Mechanical property tests indicated that the addition of 6 phr of rPET increased the impact strength of the epoxy resin from 6.77 ± 2.26 kJ/m2 to 19.10 ± 3.53 kJ/m2. Moreover, the further addition of PEGc could produce a significant toughening effect with rPET. Specifically, the impact strength, tensile strength, and elastic modulus of the epoxy resin containing 6 phr of rPET and 15 phr of PEGc increased by 318.8 %, 13.9 %, and 23.9 %, respectively, compared with those of pure EP. The significant toughening effect is attributed to the skeleton provided by rPET and flexible molecular chains provided by PEGc. Meanwhile, the results of molecular dynamics simulation confirmed that PEGc can effectively enhance the modulus of rPET/EP composites. Through the curing kinetic parameters obtained from non-isothermal DSC tests, the Kamal autocatalytic model was found to better describe the curing reaction process of the epoxy composites. This work provides a low-cost route for fabricating epoxy composites with excellent toughness.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信