Application and extension of diesel spray theory in analysis of methanol spray characteristics under high-pressure injection conditions

Pengbo Dong , Yifan Zhang , Yang Wang , Wuqiang Long , Jiangping Tian , Hua Tian , Keiya Nishida
{"title":"Application and extension of diesel spray theory in analysis of methanol spray characteristics under high-pressure injection conditions","authors":"Pengbo Dong ,&nbsp;Yifan Zhang ,&nbsp;Yang Wang ,&nbsp;Wuqiang Long ,&nbsp;Jiangping Tian ,&nbsp;Hua Tian ,&nbsp;Keiya Nishida","doi":"10.1016/j.gerr.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><div>Methanol has received widespread attention as a kind of alternative fuel for internal combustion engines because of its wide range of sources, low price, low combustion emission pollution, and carbon neutrality. Meanwhile, the relatively developed diesel spray theories have a great reference value to theoretical analysis of high-pressure methanol injection. Based on the optical experiment of the methanol sprays under high-pressure injection conditions, the empirical models for predicting spray tip penetration, spray angle, spray area, and spray volume of diesel were used to calculate the parameters of the methanol sprays. These calculation values were then compared with the experimental values to establish empirical models of high-pressure methanol spray characteristics. On this basis, an assessment of the adaptability of the diesel spray similarity theory applied to the high-pressure methanol sprays was conducted under similarity conditions. The results show that Wakuri's model has the best predictive performance on the methanol spray tip penetration (the average relative error is 4.31%), and Inagaki's model provides the most precise predictions on the methanol spray angle (the average relative error is 2.63%). After correcting the constants, empirical models that can describe the methanol spray characteristics in this experiment were proposed. In terms of the similarity theory, the diesel spray similarity theory shows good adaptability to the spray tip penetration and spray angle of the high-pressure methanol sprays with nozzle diameters of 0.12 mm and 0.15 mm under similarity conditions. The above results can serve as a basis for extending diesel spray theory to methanol and for the upsizing or downsizing design of direct injection methanol engines with different bore sizes of the same series.</div></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 4","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol has received widespread attention as a kind of alternative fuel for internal combustion engines because of its wide range of sources, low price, low combustion emission pollution, and carbon neutrality. Meanwhile, the relatively developed diesel spray theories have a great reference value to theoretical analysis of high-pressure methanol injection. Based on the optical experiment of the methanol sprays under high-pressure injection conditions, the empirical models for predicting spray tip penetration, spray angle, spray area, and spray volume of diesel were used to calculate the parameters of the methanol sprays. These calculation values were then compared with the experimental values to establish empirical models of high-pressure methanol spray characteristics. On this basis, an assessment of the adaptability of the diesel spray similarity theory applied to the high-pressure methanol sprays was conducted under similarity conditions. The results show that Wakuri's model has the best predictive performance on the methanol spray tip penetration (the average relative error is 4.31%), and Inagaki's model provides the most precise predictions on the methanol spray angle (the average relative error is 2.63%). After correcting the constants, empirical models that can describe the methanol spray characteristics in this experiment were proposed. In terms of the similarity theory, the diesel spray similarity theory shows good adaptability to the spray tip penetration and spray angle of the high-pressure methanol sprays with nozzle diameters of 0.12 mm and 0.15 mm under similarity conditions. The above results can serve as a basis for extending diesel spray theory to methanol and for the upsizing or downsizing design of direct injection methanol engines with different bore sizes of the same series.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信