Prediction and exploration of emission wavelength (or energy) of luminescent materials based on machine learning

IF 3.3 3区 物理与天体物理 Q2 OPTICS
Xin Shi , Xiaotong Zhong , Wei Liu , Songwei Wang , Zhijun Zhang , Li Lin , Yuguo Chen , Kehong Zhang , Jingtai Zhao
{"title":"Prediction and exploration of emission wavelength (or energy) of luminescent materials based on machine learning","authors":"Xin Shi ,&nbsp;Xiaotong Zhong ,&nbsp;Wei Liu ,&nbsp;Songwei Wang ,&nbsp;Zhijun Zhang ,&nbsp;Li Lin ,&nbsp;Yuguo Chen ,&nbsp;Kehong Zhang ,&nbsp;Jingtai Zhao","doi":"10.1016/j.jlumin.2024.121024","DOIUrl":null,"url":null,"abstract":"<div><div>In the optical field of materials science, it is important to predict the emission wavelength (or energy) of luminescent materials, especially when different dopant ions are involved, which makes the investigation even more complex. The selection of doped ions directly determines the optical properties of luminescent materials, so the accurate prediction of the emission wavelength (or energy) of doped luminescent materials has become a key challenge in scientific research. Traditional theoretical calculation methods often fail to fully consider the complexity of the interactions between ions in different material systems, but machine learning models provide an efficient solution for the research in this field. In this study, we collected a large amount of data of light-emitting materials doped with different ions, combined with their structural feature descriptors, and used a variety of machine learning models to predict the emission wavelength. On the basis of this model we give a prediction of the emission wavelength of the actually synthesized luminous materials in our research group, which are more accurate in the quality of luminous materials doped with Eu<sup>3+,</sup> Sm<sup>3+</sup> plus some Tb<sup>3+</sup> ions. In the further analysis of the factors affecting the emission wavelength (or energy) of the luminescent materials, we find that the mean first ionization potential, the mean electron affinity and the mean Pauling electronegativity are the key factors. This study shows that machine learning methods have great application potential in wavelength (or energy) prediction of luminous materials and provide an effective tool for material screening and performance optimization in the future.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"279 ","pages":"Article 121024"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002223132400588X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the optical field of materials science, it is important to predict the emission wavelength (or energy) of luminescent materials, especially when different dopant ions are involved, which makes the investigation even more complex. The selection of doped ions directly determines the optical properties of luminescent materials, so the accurate prediction of the emission wavelength (or energy) of doped luminescent materials has become a key challenge in scientific research. Traditional theoretical calculation methods often fail to fully consider the complexity of the interactions between ions in different material systems, but machine learning models provide an efficient solution for the research in this field. In this study, we collected a large amount of data of light-emitting materials doped with different ions, combined with their structural feature descriptors, and used a variety of machine learning models to predict the emission wavelength. On the basis of this model we give a prediction of the emission wavelength of the actually synthesized luminous materials in our research group, which are more accurate in the quality of luminous materials doped with Eu3+, Sm3+ plus some Tb3+ ions. In the further analysis of the factors affecting the emission wavelength (or energy) of the luminescent materials, we find that the mean first ionization potential, the mean electron affinity and the mean Pauling electronegativity are the key factors. This study shows that machine learning methods have great application potential in wavelength (or energy) prediction of luminous materials and provide an effective tool for material screening and performance optimization in the future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信