Schiff bases and oligomers derived from trifluoromethylaniline-based monomers: Thermal, optical, electrochemical properties and applications as fluorescent probes for Sn2+
{"title":"Schiff bases and oligomers derived from trifluoromethylaniline-based monomers: Thermal, optical, electrochemical properties and applications as fluorescent probes for Sn2+","authors":"Elif Karacan Yeldir, İsmet Kaya, Oğuzhan Tutluel","doi":"10.1016/j.reactfunctpolym.2024.106133","DOIUrl":null,"url":null,"abstract":"<div><div>Within the scope of the study, three different Schiff bases were synthesized from 3,5-bis(trifluoromethyl)aniline, a halogen-containing aniline derivative, with three different aldehydes, 3-hydroxy-4-methoxy-benzaldehyde, salicylaldehyde and 2-hydroxy-1-naphthaldehyde. These three synthesized Schiff bases were evaluated as monomers and oxidatively polymerized in the presence of sodium hypochlorite, a strong oxidant. The structural properties of these three monomers and three polymers were elucidated with the help of UV–Vis, FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra. Their molecular weights were determined by gel permeation chromatography (GPC) and it was determined that the macromolecules obtained as a result of the oxidation reaction were in the oligomer order. In order to investigate their electrochemical properties, cyclic voltammetry (CV) was used to find their oxidation-reduction potentials. The HOMO-LUMO potentials and electrochemical band gap values of the synthesized Schiff bases and oligomers were calculated. Thermal stabilities of the monomers and oligomers were determined by thermogravimetric-differantial thermal analysis (TG-DTA). It was determined that the thermal stabilities of the obtained oligomers were higher than those of the Schiff bases. The glass transition temperature (<em>T</em><sub><em>g</em></sub>) and surface morphologies of oligomers were determined from DSC and SEM measurements, respectively. Their optical properties were examined by UV–Vis and fluorescence spectra. It was found that 1-(((3,5-bis(trifluoromethyl)phenyl)imino)methyl) naphthalene-2-ol (TFMHN), one of the Schiff bases, has a turn-on fluorescence sensor property with increasing fluorescence emission intensity in the presence of Sn<sup>2+</sup> among a series of metal ions and can be used as a selective and sensitive fluorescence probe for Sn<sup>2+</sup> with a limit of dedection (<em>LOD</em>) value of 7.14 × 10<sup>−8</sup> M.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"207 ","pages":"Article 106133"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824003080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Within the scope of the study, three different Schiff bases were synthesized from 3,5-bis(trifluoromethyl)aniline, a halogen-containing aniline derivative, with three different aldehydes, 3-hydroxy-4-methoxy-benzaldehyde, salicylaldehyde and 2-hydroxy-1-naphthaldehyde. These three synthesized Schiff bases were evaluated as monomers and oxidatively polymerized in the presence of sodium hypochlorite, a strong oxidant. The structural properties of these three monomers and three polymers were elucidated with the help of UV–Vis, FT-IR, 1H NMR, 13C NMR spectra. Their molecular weights were determined by gel permeation chromatography (GPC) and it was determined that the macromolecules obtained as a result of the oxidation reaction were in the oligomer order. In order to investigate their electrochemical properties, cyclic voltammetry (CV) was used to find their oxidation-reduction potentials. The HOMO-LUMO potentials and electrochemical band gap values of the synthesized Schiff bases and oligomers were calculated. Thermal stabilities of the monomers and oligomers were determined by thermogravimetric-differantial thermal analysis (TG-DTA). It was determined that the thermal stabilities of the obtained oligomers were higher than those of the Schiff bases. The glass transition temperature (Tg) and surface morphologies of oligomers were determined from DSC and SEM measurements, respectively. Their optical properties were examined by UV–Vis and fluorescence spectra. It was found that 1-(((3,5-bis(trifluoromethyl)phenyl)imino)methyl) naphthalene-2-ol (TFMHN), one of the Schiff bases, has a turn-on fluorescence sensor property with increasing fluorescence emission intensity in the presence of Sn2+ among a series of metal ions and can be used as a selective and sensitive fluorescence probe for Sn2+ with a limit of dedection (LOD) value of 7.14 × 10−8 M.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.