Finite bit rate stabilization of switched linear systems with bounded delay based on event-triggering control

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Yihong Tang, Yuan Liu, Qiang Ling
{"title":"Finite bit rate stabilization of switched linear systems with bounded delay based on event-triggering control","authors":"Yihong Tang,&nbsp;Yuan Liu,&nbsp;Qiang Ling","doi":"10.1016/j.nahs.2024.101567","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the finite bit rate stabilization of a switched linear system whose feedback packets are transmitted through a communication network with bounded time-varying delays. The unknown network delay and mode switching cause unavoidable asynchronous modes between the sensor and the controller, and greatly complicate the stabilization of that system. To resolve these issues, an event-triggering mechanism and a quantization method with a finite bit rate are proposed to sample, quantize and transmit the feedback signals. Furthermore, state estimation updating methods are designed to eliminate the effects of time-varying delays on state estimation errors. We derive sufficient stabilizing conditions in terms of average dwell time and feedback bit rate through determining the convergence rates of the Lyapunov function at sampling instants under different switching scenarios. Simulations are presented to verify the effectiveness of the proposed strategies.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"56 ","pages":"Article 101567"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24001043","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the finite bit rate stabilization of a switched linear system whose feedback packets are transmitted through a communication network with bounded time-varying delays. The unknown network delay and mode switching cause unavoidable asynchronous modes between the sensor and the controller, and greatly complicate the stabilization of that system. To resolve these issues, an event-triggering mechanism and a quantization method with a finite bit rate are proposed to sample, quantize and transmit the feedback signals. Furthermore, state estimation updating methods are designed to eliminate the effects of time-varying delays on state estimation errors. We derive sufficient stabilizing conditions in terms of average dwell time and feedback bit rate through determining the convergence rates of the Lyapunov function at sampling instants under different switching scenarios. Simulations are presented to verify the effectiveness of the proposed strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信