Jian Xiang , Ruggero Lanotte , Simone Tini , Stephen Chong , Massimo Merro
{"title":"Measuring robustness in cyber-physical systems under sensor attacks","authors":"Jian Xiang , Ruggero Lanotte , Simone Tini , Stephen Chong , Massimo Merro","doi":"10.1016/j.nahs.2024.101559","DOIUrl":null,"url":null,"abstract":"<div><div>This paper contributes a formal framework for quantitative analysis of bounded sensor attacks on cyber–physical systems, using the formalism of differential dynamic logic. Given a precondition and postcondition of a system, we formalize two quantitative safety notions, quantitative forward and backward safety, which respectively express (1) how strong the strongest postcondition of the system is with respect to the specified postcondition, and (2) how strong the specified precondition is with respect to the weakest precondition of the system needed to ensure the specified postcondition holds. We introduce two notions, forward and backward robustness, to characterize the robustness of a system against sensor attacks as the loss of safety. To reason about robustness, we introduce two simulation distances, forward and backward simulation distances, which are defined based on the behavioral distances between the original system and the system with compromised sensors. Forward and backward distances, respectively, characterize upper bounds of the degree of forward and backward safety loss caused by the sensor attacks. We verify the two simulation distances by expressing them as modalities, i.e., formulas of differential dynamic logic, and develop an ad-hoc proof system to reason with such formulas. We showcase our formal notions and reasoning techniques on two non-trivial case studies: an autonomous vehicle that needs to avoid collision and a water tank system.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"56 ","pages":"Article 101559"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000967","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper contributes a formal framework for quantitative analysis of bounded sensor attacks on cyber–physical systems, using the formalism of differential dynamic logic. Given a precondition and postcondition of a system, we formalize two quantitative safety notions, quantitative forward and backward safety, which respectively express (1) how strong the strongest postcondition of the system is with respect to the specified postcondition, and (2) how strong the specified precondition is with respect to the weakest precondition of the system needed to ensure the specified postcondition holds. We introduce two notions, forward and backward robustness, to characterize the robustness of a system against sensor attacks as the loss of safety. To reason about robustness, we introduce two simulation distances, forward and backward simulation distances, which are defined based on the behavioral distances between the original system and the system with compromised sensors. Forward and backward distances, respectively, characterize upper bounds of the degree of forward and backward safety loss caused by the sensor attacks. We verify the two simulation distances by expressing them as modalities, i.e., formulas of differential dynamic logic, and develop an ad-hoc proof system to reason with such formulas. We showcase our formal notions and reasoning techniques on two non-trivial case studies: an autonomous vehicle that needs to avoid collision and a water tank system.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.