On (θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra–Stieltjes–type integral equations

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
M. Ap. Silva , E.M. Bonotto , R. Collegari , M. Federson , M.C. Gadotti
{"title":"On (θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra–Stieltjes–type integral equations","authors":"M. Ap. Silva ,&nbsp;E.M. Bonotto ,&nbsp;R. Collegari ,&nbsp;M. Federson ,&nbsp;M.C. Gadotti","doi":"10.1016/j.nahs.2024.101573","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that generalized ordinary differential equations (generalized ODEs for short) encompass other types of equations such as impulsive differential equations as well as dynamic equations on time scales. The present paper concerns the theory of <span><math><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></math></span>-periodic solutions in the framework of generalized ODEs in Banach spaces. We exhibit necessary and sufficient conditions for a solution of a generalized ODE to be <span><math><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></math></span>-periodic. Moreover, we develop the Floquet theory of homogeneous linear generalized ODEs and, as a consequence, we present a characterization of fundamental matrices for the finite dimensional case. As an illustration, we apply the main results to Volterra–Stieltjes–type integral equations.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"56 ","pages":"Article 101573"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24001109","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that generalized ordinary differential equations (generalized ODEs for short) encompass other types of equations such as impulsive differential equations as well as dynamic equations on time scales. The present paper concerns the theory of (θ,T)-periodic solutions in the framework of generalized ODEs in Banach spaces. We exhibit necessary and sufficient conditions for a solution of a generalized ODE to be (θ,T)-periodic. Moreover, we develop the Floquet theory of homogeneous linear generalized ODEs and, as a consequence, we present a characterization of fundamental matrices for the finite dimensional case. As an illustration, we apply the main results to Volterra–Stieltjes–type integral equations.
抽象广义ode的(θ,T)-周期解及其在volterra - stieltje型积分方程中的应用
众所周知,广义常微分方程(简称广义微分方程)包含了其他类型的方程,如脉冲微分方程和时间尺度上的动态方程。本文研究了Banach空间中广义ode框架下(θ,T)-周期解的理论。给出了广义ODE解为(θ,T)周期的充分必要条件。此外,我们发展了齐次线性广义ode的Floquet理论,因此,我们给出了有限维情况下基本矩阵的表征。作为说明,我们将主要结果应用于volterra - stieltje型积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信