{"title":"Metabolically active fungus is not always required for fungal-assisted microalgae immobilization","authors":"Suvro Talukdar, Tyler J. Barzee","doi":"10.1016/j.algal.2025.103908","DOIUrl":null,"url":null,"abstract":"<div><div>Fungal-assisted immobilization of microalgae involves capturing microalgae cells within a fungal hyphal matrix. The prevailing consensus in the literature suggests that fungal metabolic activity is essential for successful immobilization, which limits the potential applications of inactive fungal pellets. However, evidence from fungal-assisted immobilization of other cell types suggests that inactive fungal pellets may display successful immobilization under certain conditions. Therefore, this study was designed to address whether metabolic activity of fungi is a strict requirement for immobilizing microalgae cells utilizing filamentous fungus <em>Aspergillus awamori</em> to immobilize microalgae cells of <em>Haematococcus pluvialis.</em> The results demonstrated that heat-deactivated (HD) fungal pellets effectively immobilized microalgae and achieved a maximum immobilization efficiency of 62.3 % within 35 h but only under low agitation conditions (75 rpm). In contrast, high agitation power (150 rpm) resulted in a significantly lower immobilization efficiency of only 9.5 %. An investigation of changes in surface charge, bonds, and morphology revealed that a balance between physical entrapment and shear forces were likely key factors driving effective immobilization with heat-deactivated fungal pellets. The findings suggest that while the mechanism of immobilization can involve both physical and biological components, biologically inactive fungal sorbents may be conducive to a wider range of material handling and bioprocessing applications than previously recognized. This study highlights the need for further investigations into the mechanisms of cellular immobilization by metabolically inactive fungi and the economic and environmental implications of this consideration in biomanufacturing systems.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103908"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal-assisted immobilization of microalgae involves capturing microalgae cells within a fungal hyphal matrix. The prevailing consensus in the literature suggests that fungal metabolic activity is essential for successful immobilization, which limits the potential applications of inactive fungal pellets. However, evidence from fungal-assisted immobilization of other cell types suggests that inactive fungal pellets may display successful immobilization under certain conditions. Therefore, this study was designed to address whether metabolic activity of fungi is a strict requirement for immobilizing microalgae cells utilizing filamentous fungus Aspergillus awamori to immobilize microalgae cells of Haematococcus pluvialis. The results demonstrated that heat-deactivated (HD) fungal pellets effectively immobilized microalgae and achieved a maximum immobilization efficiency of 62.3 % within 35 h but only under low agitation conditions (75 rpm). In contrast, high agitation power (150 rpm) resulted in a significantly lower immobilization efficiency of only 9.5 %. An investigation of changes in surface charge, bonds, and morphology revealed that a balance between physical entrapment and shear forces were likely key factors driving effective immobilization with heat-deactivated fungal pellets. The findings suggest that while the mechanism of immobilization can involve both physical and biological components, biologically inactive fungal sorbents may be conducive to a wider range of material handling and bioprocessing applications than previously recognized. This study highlights the need for further investigations into the mechanisms of cellular immobilization by metabolically inactive fungi and the economic and environmental implications of this consideration in biomanufacturing systems.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment