Probability of presence versus ψ∗(x,t)ψ(x,t)

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Frank Wilczek , Zara Yu
{"title":"Probability of presence versus ψ∗(x,t)ψ(x,t)","authors":"Frank Wilczek ,&nbsp;Zara Yu","doi":"10.1016/j.aop.2025.169935","DOIUrl":null,"url":null,"abstract":"<div><div>Postulating the identification of <span><math><mrow><msup><mrow><mi>ψ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> with a physical probability density is unsatisfactory conceptually and overly limited practically. For electrons, there is a simple, calculable relativistic correction proportional to <span><math><mrow><mo>∇</mo><msup><mrow><mi>ψ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>⋅</mi><mo>∇</mo><mi>ψ</mi></mrow></math></span>. In particular, zeroes of the wave function do not indicate vanishing probability density of presence. We derive a correction of this kind from a Lagrangian, in a form suitable for wide generalization and use in effective field theories. Thus we define a large new class of candidate models for (quasi-)particles and fields, featuring modified <em>kinetic</em> terms. We solve for the stationary states and energy spectrum in some representative problems, finding striking effects including the emergence of negative effective mass at high energy and of localization by energy.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"475 ","pages":"Article 169935"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625000168","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Postulating the identification of ψ(x,t)ψ(x,t) with a physical probability density is unsatisfactory conceptually and overly limited practically. For electrons, there is a simple, calculable relativistic correction proportional to ψψ. In particular, zeroes of the wave function do not indicate vanishing probability density of presence. We derive a correction of this kind from a Lagrangian, in a form suitable for wide generalization and use in effective field theories. Thus we define a large new class of candidate models for (quasi-)particles and fields, featuring modified kinetic terms. We solve for the stationary states and energy spectrum in some representative problems, finding striking effects including the emergence of negative effective mass at high energy and of localization by energy.
假设ψ∗(x,t)ψ(x,t)具有物理概率密度,在概念上是不令人满意的,而且在实践上过于有限。对于电子,有一个简单的、可计算的相对论修正,与∇ψ∗⋅∇ψ成正比。特别是,波函数的零点并不表示存在的消失概率密度。我们从拉格朗日量中导出了这类修正,其形式适合于广泛推广和在有效场论中使用。因此,我们定义了一类新的(准)粒子和场的候选模型,具有修改的动力学项。我们求解了一些代表性问题的定态和能谱,发现了显著的影响,包括高能负有效质量的出现和能量局域化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信