Xiaosong Tian , Min Wang , Xing Liao , Shiyu Chu , Haixiang Cheng , Xiaoai Lin , Longzao Luo
{"title":"Removal of single and multi-heavy metals from piggery digestate by the electric field-microalgae system: Influences, kinetics and mechanisms","authors":"Xiaosong Tian , Min Wang , Xing Liao , Shiyu Chu , Haixiang Cheng , Xiaoai Lin , Longzao Luo","doi":"10.1016/j.algal.2025.103934","DOIUrl":null,"url":null,"abstract":"<div><div>Electric field-microalgae system (EFMS) has demonstrated significant potential in removing humic acids and nutrients from the piggery digestate, while its removal of heavy metals (HMs) has not been extensively studied. This study investigated the factors influencing the removal of HMs removal by EFMS, as well as the kinetics and underlying mechanisms. Results showed that the removal of single HM by EFMS was dependent on the initial concentration of HM, with the highest removal efficiency being 85.54 % for Cu<sup>2+</sup> at 4.00 mg/L, 97.87 % for Zn<sup>2+</sup> at 10.00 mg/L, and 99.07 % for Cd<sup>2+</sup> at 2.00 mg/L, respectively. Cu<sup>2+</sup> was removed preferentially by EFMS when the three HMs coexisted, achieving an efficiency of approximately 86 % within 1 h. Meanwhile, the removal efficiency of Zn<sup>2+</sup> and Cd<sup>2+</sup> approached 85 % after 1.5 h. The simultaneous removal of multiple HMs by EFMS was affected by factors including the intensity of the electric field, the concentration of microalgae inoculum, and the pH level. The removal of the three HMs by EFMS followed the pseudo-first-order kinetic model. The primary mechanism of HMs removal by EFMS involved oxidation reactions induced by the electric field, followed by adsorption processes.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103934"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electric field-microalgae system (EFMS) has demonstrated significant potential in removing humic acids and nutrients from the piggery digestate, while its removal of heavy metals (HMs) has not been extensively studied. This study investigated the factors influencing the removal of HMs removal by EFMS, as well as the kinetics and underlying mechanisms. Results showed that the removal of single HM by EFMS was dependent on the initial concentration of HM, with the highest removal efficiency being 85.54 % for Cu2+ at 4.00 mg/L, 97.87 % for Zn2+ at 10.00 mg/L, and 99.07 % for Cd2+ at 2.00 mg/L, respectively. Cu2+ was removed preferentially by EFMS when the three HMs coexisted, achieving an efficiency of approximately 86 % within 1 h. Meanwhile, the removal efficiency of Zn2+ and Cd2+ approached 85 % after 1.5 h. The simultaneous removal of multiple HMs by EFMS was affected by factors including the intensity of the electric field, the concentration of microalgae inoculum, and the pH level. The removal of the three HMs by EFMS followed the pseudo-first-order kinetic model. The primary mechanism of HMs removal by EFMS involved oxidation reactions induced by the electric field, followed by adsorption processes.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment