Removal of single and multi-heavy metals from piggery digestate by the electric field-microalgae system: Influences, kinetics and mechanisms

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaosong Tian , Min Wang , Xing Liao , Shiyu Chu , Haixiang Cheng , Xiaoai Lin , Longzao Luo
{"title":"Removal of single and multi-heavy metals from piggery digestate by the electric field-microalgae system: Influences, kinetics and mechanisms","authors":"Xiaosong Tian ,&nbsp;Min Wang ,&nbsp;Xing Liao ,&nbsp;Shiyu Chu ,&nbsp;Haixiang Cheng ,&nbsp;Xiaoai Lin ,&nbsp;Longzao Luo","doi":"10.1016/j.algal.2025.103934","DOIUrl":null,"url":null,"abstract":"<div><div>Electric field-microalgae system (EFMS) has demonstrated significant potential in removing humic acids and nutrients from the piggery digestate, while its removal of heavy metals (HMs) has not been extensively studied. This study investigated the factors influencing the removal of HMs removal by EFMS, as well as the kinetics and underlying mechanisms. Results showed that the removal of single HM by EFMS was dependent on the initial concentration of HM, with the highest removal efficiency being 85.54 % for Cu<sup>2+</sup> at 4.00 mg/L, 97.87 % for Zn<sup>2+</sup> at 10.00 mg/L, and 99.07 % for Cd<sup>2+</sup> at 2.00 mg/L, respectively. Cu<sup>2+</sup> was removed preferentially by EFMS when the three HMs coexisted, achieving an efficiency of approximately 86 % within 1 h. Meanwhile, the removal efficiency of Zn<sup>2+</sup> and Cd<sup>2+</sup> approached 85 % after 1.5 h. The simultaneous removal of multiple HMs by EFMS was affected by factors including the intensity of the electric field, the concentration of microalgae inoculum, and the pH level. The removal of the three HMs by EFMS followed the pseudo-first-order kinetic model. The primary mechanism of HMs removal by EFMS involved oxidation reactions induced by the electric field, followed by adsorption processes.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103934"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electric field-microalgae system (EFMS) has demonstrated significant potential in removing humic acids and nutrients from the piggery digestate, while its removal of heavy metals (HMs) has not been extensively studied. This study investigated the factors influencing the removal of HMs removal by EFMS, as well as the kinetics and underlying mechanisms. Results showed that the removal of single HM by EFMS was dependent on the initial concentration of HM, with the highest removal efficiency being 85.54 % for Cu2+ at 4.00 mg/L, 97.87 % for Zn2+ at 10.00 mg/L, and 99.07 % for Cd2+ at 2.00 mg/L, respectively. Cu2+ was removed preferentially by EFMS when the three HMs coexisted, achieving an efficiency of approximately 86 % within 1 h. Meanwhile, the removal efficiency of Zn2+ and Cd2+ approached 85 % after 1.5 h. The simultaneous removal of multiple HMs by EFMS was affected by factors including the intensity of the electric field, the concentration of microalgae inoculum, and the pH level. The removal of the three HMs by EFMS followed the pseudo-first-order kinetic model. The primary mechanism of HMs removal by EFMS involved oxidation reactions induced by the electric field, followed by adsorption processes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信