Land use effect on soil quality and its implication to soil carbon storage in Aleta Chuko, Ethiopia

IF 3.1 2区 农林科学 Q2 SOIL SCIENCE
Zenebe Shuite , Ambachew Demessie , Tesfaye Abebe
{"title":"Land use effect on soil quality and its implication to soil carbon storage in Aleta Chuko, Ethiopia","authors":"Zenebe Shuite ,&nbsp;Ambachew Demessie ,&nbsp;Tesfaye Abebe","doi":"10.1016/j.geodrs.2025.e00917","DOIUrl":null,"url":null,"abstract":"<div><div>Soil quality index (SQI) is a useful tool to identify soil productivity status and design management strategies. Land use (LU) and management conditions can affect the physico-chemical qualities of the soil which in turn influences the carbon storage ability of the soil. However, the effects of LU on soil quality and associated carbon storage are not well understood in the Aleta Chuko. Three transect lines were drawn based on spatial analogue design covering three LU types, 4 plots for each land use from individual transect, 12 plots per LU, a total of 36 plots, and then 108 soil samples (0–30 cm depth) were taken in three diagonal pits within 20 × 20 m. 19 soil physico-chemical and biological properties were evaluated for SQI, and 12 soil quality indicators were selected using principal component analysis. The results showed that soil physico-chemical and biological characteristics were better under Coffee-enset based agroforestry (CEA) than Chat mono-cropping (CM) and Eucalyptus woodlot (EW). CEA showed significantly higher macro aggregate ≥ 5 mm, steady infiltration rate, Av. P, Av. K, Ex. K, total N, CEC and MBC, but no significant difference was observed between CM and EW in these variables (p &lt; 0.05). SQI of CEA, CM and EW were 0.61, 0.53 and 0.50, respectively. The higher SQI in CEA was due to high MBC(586.3 μg g<sup>−1</sup> soil), litterfall, SOM (4.7 %) and low bulk density (BD, 0.87 g cm<sup>−3</sup>). Total soil organic carbon was significantly higher in CEA (35.2) &gt; CM (24.2) &gt; EW (19.4) g kg<sup>−1</sup> soil and the same is true for Mg<sup>2+</sup> CEA (4.9), CM (3.9) and EW (2.7) meq 100 g<sup>−1</sup> (p &lt; 0.05). Multiple regression analysis on five (BD, CEC, MBC, Ex. Ca and macro aggregates) soil quality determinant variables predicting SOC showed that these variables have a significant effect on SOC (p &lt; 0.001). Specifically, BD and MBC were significant negatively and positively predicting variables of SOC, respectively (p &lt; 0.001). This study suggests that LU practice and management variances over similar biophysical environments resulted in variations in soil physico-chemical, biological properties and the subsequent difference in SQI which in turn determine SOC storage capacity of the soil. Long-term effects of Eucalyptus and CM on soils should be a concern for degradation, although their short-term economic benefits are attractive.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"40 ","pages":"Article e00917"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009425000021","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil quality index (SQI) is a useful tool to identify soil productivity status and design management strategies. Land use (LU) and management conditions can affect the physico-chemical qualities of the soil which in turn influences the carbon storage ability of the soil. However, the effects of LU on soil quality and associated carbon storage are not well understood in the Aleta Chuko. Three transect lines were drawn based on spatial analogue design covering three LU types, 4 plots for each land use from individual transect, 12 plots per LU, a total of 36 plots, and then 108 soil samples (0–30 cm depth) were taken in three diagonal pits within 20 × 20 m. 19 soil physico-chemical and biological properties were evaluated for SQI, and 12 soil quality indicators were selected using principal component analysis. The results showed that soil physico-chemical and biological characteristics were better under Coffee-enset based agroforestry (CEA) than Chat mono-cropping (CM) and Eucalyptus woodlot (EW). CEA showed significantly higher macro aggregate ≥ 5 mm, steady infiltration rate, Av. P, Av. K, Ex. K, total N, CEC and MBC, but no significant difference was observed between CM and EW in these variables (p < 0.05). SQI of CEA, CM and EW were 0.61, 0.53 and 0.50, respectively. The higher SQI in CEA was due to high MBC(586.3 μg g−1 soil), litterfall, SOM (4.7 %) and low bulk density (BD, 0.87 g cm−3). Total soil organic carbon was significantly higher in CEA (35.2) > CM (24.2) > EW (19.4) g kg−1 soil and the same is true for Mg2+ CEA (4.9), CM (3.9) and EW (2.7) meq 100 g−1 (p < 0.05). Multiple regression analysis on five (BD, CEC, MBC, Ex. Ca and macro aggregates) soil quality determinant variables predicting SOC showed that these variables have a significant effect on SOC (p < 0.001). Specifically, BD and MBC were significant negatively and positively predicting variables of SOC, respectively (p < 0.001). This study suggests that LU practice and management variances over similar biophysical environments resulted in variations in soil physico-chemical, biological properties and the subsequent difference in SQI which in turn determine SOC storage capacity of the soil. Long-term effects of Eucalyptus and CM on soils should be a concern for degradation, although their short-term economic benefits are attractive.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma Regional
Geoderma Regional Agricultural and Biological Sciences-Soil Science
CiteScore
6.10
自引率
7.30%
发文量
122
审稿时长
76 days
期刊介绍: Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信