Gehad M.M. Abd El-Wahab , Yasser I. Khedr , Sanaa A. Masoud , Atef M.K. Nassar
{"title":"Carbendazim-chitosan and copper- and cobalt-fusarium nanoparticles biological activity against potato root rot disease caused by Rhizoctonia solani","authors":"Gehad M.M. Abd El-Wahab , Yasser I. Khedr , Sanaa A. Masoud , Atef M.K. Nassar","doi":"10.1016/j.plana.2025.100136","DOIUrl":null,"url":null,"abstract":"<div><div>Management strategies of potato fungal diseases rely mainly on using conventional fungicides that could cause risks to humans. Therefore, implementing environmentally friendly control strategies would be crucial. Nanotechnology offers innovative strategies with immense prospective to revolutionize plant protection industries and improve the quality of life. Therefore, this investigation aimed to study the fungicidal efficacy of nanoparticles of cobalt (CoNPs) and copper (CuNPs) synthesized with <em>Fusarium solani</em> cell filtrate and carbendazim-loaded in chitosan (CBDNPs) against <em>Rhizoctonia solani</em>. The electron microscope results showed spherical to oval nanoparticles with sizes ranging from 24 to 69 nm. The CBDNPs were more effective against <em>R. solani</em> than both CoNPs and CuNPs, while CoNPs were more efficient against <em>R. solani</em> than CuNPs. The stem canker was controlled equally with CBDNPs, CoNPs, and CuNPs. Additionally, the 500 ppm of CoNPs and CuNPs effectively controlled the black scarf disease. Also, activities of stress-related enzymes (peroxidase, polyphenol oxidase, and phenylalanine ammonialyase) were elevated after 2 weeks of application and continued for more than 4 weeks. Alongside, the potatoes growth and yield parameters were boosted. It would be concluded that nanofungicides and nano-microminerals might offer a potential additive input to the integrated pest management systems.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100136"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Management strategies of potato fungal diseases rely mainly on using conventional fungicides that could cause risks to humans. Therefore, implementing environmentally friendly control strategies would be crucial. Nanotechnology offers innovative strategies with immense prospective to revolutionize plant protection industries and improve the quality of life. Therefore, this investigation aimed to study the fungicidal efficacy of nanoparticles of cobalt (CoNPs) and copper (CuNPs) synthesized with Fusarium solani cell filtrate and carbendazim-loaded in chitosan (CBDNPs) against Rhizoctonia solani. The electron microscope results showed spherical to oval nanoparticles with sizes ranging from 24 to 69 nm. The CBDNPs were more effective against R. solani than both CoNPs and CuNPs, while CoNPs were more efficient against R. solani than CuNPs. The stem canker was controlled equally with CBDNPs, CoNPs, and CuNPs. Additionally, the 500 ppm of CoNPs and CuNPs effectively controlled the black scarf disease. Also, activities of stress-related enzymes (peroxidase, polyphenol oxidase, and phenylalanine ammonialyase) were elevated after 2 weeks of application and continued for more than 4 weeks. Alongside, the potatoes growth and yield parameters were boosted. It would be concluded that nanofungicides and nano-microminerals might offer a potential additive input to the integrated pest management systems.