Cryogenic and in situ characterization techniques for electrode interphase analysis

IF 42.9 Q1 ELECTROCHEMISTRY
Shuang Xiang , Lin Zhu , Liang Fu , Miaomiao Wang , Xianbi Zhang , Yougen Tang , Dan Sun , Haiyan Wang
{"title":"Cryogenic and in situ characterization techniques for electrode interphase analysis","authors":"Shuang Xiang ,&nbsp;Lin Zhu ,&nbsp;Liang Fu ,&nbsp;Miaomiao Wang ,&nbsp;Xianbi Zhang ,&nbsp;Yougen Tang ,&nbsp;Dan Sun ,&nbsp;Haiyan Wang","doi":"10.1016/j.esci.2024.100291","DOIUrl":null,"url":null,"abstract":"<div><div>There is an urgent need to develop innovative electrochemical energy storage devices that can offer high energy density, long lifespan, excellent rate capability, and improved security. For the electrochemical system, the electrode interphase, namely the cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) play crucial roles in the operating mechanism, kinetics, and overall performance of the battery. However, the in-depth investigation of the unstable and complex electrode interphase is limited by the unavoidable air and moisture contact during the material transfer process and probable high-energy radiation damage in the characterization procedure. Recently, cryogenic techniques and <em>in situ</em> techniques have been developed and applied in the electrode interphase research to settle the radiation damage and air erosion, respectively. However, there has not been a special review that summarizes the relevant methods, so a systematic review is very important to accelerate the development. In this review, we summarize these two state-of-the-art methods, including their working principle, characterization process, advantages, and applications in electrode interphase analysis. And the integrative techniques, which are considered as the future development perspectives, are also discussed. This review can provide important directions for next-generation characterization techniques and strategies to effectively analyze the electrode interphase for advanced batteries.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100291"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172400079X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

There is an urgent need to develop innovative electrochemical energy storage devices that can offer high energy density, long lifespan, excellent rate capability, and improved security. For the electrochemical system, the electrode interphase, namely the cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) play crucial roles in the operating mechanism, kinetics, and overall performance of the battery. However, the in-depth investigation of the unstable and complex electrode interphase is limited by the unavoidable air and moisture contact during the material transfer process and probable high-energy radiation damage in the characterization procedure. Recently, cryogenic techniques and in situ techniques have been developed and applied in the electrode interphase research to settle the radiation damage and air erosion, respectively. However, there has not been a special review that summarizes the relevant methods, so a systematic review is very important to accelerate the development. In this review, we summarize these two state-of-the-art methods, including their working principle, characterization process, advantages, and applications in electrode interphase analysis. And the integrative techniques, which are considered as the future development perspectives, are also discussed. This review can provide important directions for next-generation characterization techniques and strategies to effectively analyze the electrode interphase for advanced batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信