Synthesis and characterization of lithium alumina silicate (LiAl(SiO3)2) from naturally sourced silica: a comparative study

IF 1.4 4区 化学 Q4 CHEMISTRY, INORGANIC & NUCLEAR
Djamel Barani , Omar Ben Mya , Abderazzek Aoun , Adel Amrani , Dhiaeddine Leghribi
{"title":"Synthesis and characterization of lithium alumina silicate (LiAl(SiO3)2) from naturally sourced silica: a comparative study","authors":"Djamel Barani ,&nbsp;Omar Ben Mya ,&nbsp;Abderazzek Aoun ,&nbsp;Adel Amrani ,&nbsp;Dhiaeddine Leghribi","doi":"10.1080/10426507.2024.2416204","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the synthesis and characterization of lithium aluminosilicate (LiAl(SiO<sub>3</sub>)<sub>2</sub>) using naturally sourced silica (NSS) from the Djamâa region in Algeria and compares it with laboratory-sourced silica (LSS). The synthesis was conducted using the sol–gel method and solid-state reactions with lithium carbonate, aluminum oxide, and SiO<sub>2</sub>. Characterization techniques included X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD analysis confirmed the crystalline structure of the synthesized lithium aluminosilicate, revealing distinct crystal phases: the NSS material exhibited a tetragonal spodumene-II phase. In contrast, the LSS material showed a hexagonal spodumene-III phase. The crystallite sizes were 21.96 μm for NSS and 22.14 μm for LSS, with crystallinity percentages of 60.77% and 57.55%, respectively. FTIR spectroscopy verified the successful incorporation of lithium and aluminum into the silica framework. SEM analysis provided detailed insights into surface morphology and particle size distribution, highlighting the uniformity of the materials. Specifically, the LSS material exhibited cylindrical spaces between particles, whereas the NSS material displayed spherical spaces.</div></div>","PeriodicalId":20056,"journal":{"name":"Phosphorus, Sulfur, and Silicon and the Related Elements","volume":"199 7","pages":"Pages 661-666"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus, Sulfur, and Silicon and the Related Elements","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1042650724000595","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the synthesis and characterization of lithium aluminosilicate (LiAl(SiO3)2) using naturally sourced silica (NSS) from the Djamâa region in Algeria and compares it with laboratory-sourced silica (LSS). The synthesis was conducted using the sol–gel method and solid-state reactions with lithium carbonate, aluminum oxide, and SiO2. Characterization techniques included X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD analysis confirmed the crystalline structure of the synthesized lithium aluminosilicate, revealing distinct crystal phases: the NSS material exhibited a tetragonal spodumene-II phase. In contrast, the LSS material showed a hexagonal spodumene-III phase. The crystallite sizes were 21.96 μm for NSS and 22.14 μm for LSS, with crystallinity percentages of 60.77% and 57.55%, respectively. FTIR spectroscopy verified the successful incorporation of lithium and aluminum into the silica framework. SEM analysis provided detailed insights into surface morphology and particle size distribution, highlighting the uniformity of the materials. Specifically, the LSS material exhibited cylindrical spaces between particles, whereas the NSS material displayed spherical spaces.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
7.70%
发文量
103
审稿时长
2.1 months
期刊介绍: Phosphorus, Sulfur, and Silicon and the Related Elements is a monthly publication intended to disseminate current trends and novel methods to those working in the broad and interdisciplinary field of heteroatom chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信